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Abstract 25 

The landscape of gender in education and the workforce has shifted over the past 26 

decades: women have made gains in representation, equitable pay, and recognition through 27 

awards, grants, and publications. Despite overall change, differences persist in the fields of 28 

science, technology, engineering, and mathematics (STEM). This Viewpoint article on gender 29 

disparities in STEM offers an overarching perspective by addressing what the issues are, why the 30 

issues may emerge, and how the issues may be solved. In Part One, recent data on gaps in 31 

representation, compensation, and recognition (awards, grants, publications) are reviewed, 32 

highlighting differences across subfields (e.g., computer science vs. biology) and across career 33 

trajectories (e.g., bachelor’s degrees vs. senior faculty). In Part Two, evidence on leading 34 

explanations for these gaps, including explanations centered on abilities, preferences, and 35 

explicit and implicit bias, is presented. Particular attention is paid to implicit bias – mental 36 

processes that exist largely outside of conscious awareness and control in both male and female 37 

perceivers and female targets themselves. Given its prevalence and persistence, implicit bias 38 

warrants a central focus for research and application. Finally, in Part Three, the current 39 

knowledge is presented on interventions to change individuals’ beliefs and behaviors, as well as 40 

organizational culture and practices. The moral issues surrounding equal access aside, 41 

understanding and addressing the complex issues surrounding gender in STEM is important 42 

because of the possible benefits to STEM and society that will be realized only when full 43 

participation of all capable and qualified individuals is guaranteed.   44 

 45 

Keywords: gender, STEM, implicit bias, explicit bias 46 

  47 



GENDER IN STEM 

 

2 

2 

Prologue 48 

For centuries, the essence of what constitutes the human “female” and “male” has been 49 

portrayed through a lens of difference, even opposition (e.g., Gray, 1992). In theological, 50 

philosophical, literary and scientific thought as well as in folk beliefs, “female” is represented as 51 

mentally lesser, weak, and relying on emotion, while “male” is represented as mentally superior, 52 

strong, and relying on rationality (Keller, 1985). As a consequence, women’s lack of success, 53 

leadership, and representation in fields that emphasize rationality – especially fields of science, 54 

technology, engineering, and mathematics (STEM) – used to be seen simply as a consequence of 55 

men and women’s divergent nature and capacities (Keller, 1985).   56 

Over the past fifty years, many of these beliefs are now antiquated (General Social 57 

Survey, 2019; Saad, 2017), having been challenged by women’s advances into academe and the 58 

workforce, especially in the arts and humanities, but also in STEM. Today, U.S. women earn 59 

57% of bachelor’s degrees overall and 50% of bachelor’s degrees in STEM (National Science 60 

Foundation, 2018). Gender parity is now within reach in the U.S. workforce (World Bank, 2018), 61 

and there remains no STEM field without representation of women, even in high status positions 62 

(National Science Foundation, 2018). As such, the issue of “gender in STEM” is no longer about 63 

whether women have the capacity to succeed but rather the costs to STEM that will occur 64 

without the full participation of all qualified and capable candidates, including women. 65 

Regardless of one’s personal feelings about uplifting women, the reality is that a diverse 66 

workforce and academe can provide both financial (e.g., Credit Suisse, 2012; Dezsö & Ross, 67 

2012) and intellectual benefits (e.g., Galinsky et al., 2015; Loyd, Wang, Phillips, & Lount, 68 

2013). Thus, gender diversity is necessary to meet the demands of innovation and productivity in 69 

complex STEM environments (Page, 2011, 2018). 70 
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To understand how such demands of innovation and productivity can be fulfilled, 71 

behavioral scientists study the barriers to access and opportunity, especially those arising from 72 

explicit and implicit attitudes and stereotypes held by both men and women. To this end, the 73 

current Viewpoint article evaluates recent evidence on the extent, causes, and solutions to gender 74 

disparities in STEM, with a particular focus on the role of implicit cognition – mental processes 75 

that reflect “traces of past experience… unavailable to self-report or introspection” and are 76 

therefore less conscious and controllable than their explicit counterparts measured through self-77 

report (p. 4, Greenwald & Banaji, 1995). 78 

In Part One, the magnitude of gender gaps in STEM representation, compensation, 79 

authorship, grant success, and awards is presented, as well as how these gaps have changed over 80 

time. In Part Two, leading hypotheses about the causes of such gender gaps are evaluated. 81 

Specifically, that women lag behind in STEM because of (1) innate and/or socially-determined 82 

gender differences in abilities necessary for success, (2) innate and/or socially-determined gender 83 

differences in preferences, lifestyle choices, or values among women and men, and (3) explicit 84 

and implicit bias in both women and men as they evaluate the work of women and men in 85 

STEM. Finally, in Part Three, interventions to reduce gender disparities in STEM by targeting 86 

both individual minds and organizational culture and practices are reviewed. 87 

Part One: The Extent of Gender Disparities in Science 88 

1.1 Representation 89 

The gender gap in science, technology, engineering and mathematics (STEM) representation 90 

starts early. By middle school, more than twice as many boys than girls intend to work in science 91 

or engineering-related jobs (Legewie & DiPrete, 2012). These differences continue through high 92 

school courses, particularly in computer science, engineering, and related sub-fields 93 
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(Cunningham & Hoyer, 2015). For instance, although female U.S. high school students 94 

constitute 61% of AP biology, 52% of AP statistics, and 50% of AP chemistry students, they 95 

represent only 23% of AP computer science and 29% of AP physics students (National Science 96 

Foundation, 2018). In college, these disparities increase: 5 times more men than women report 97 

an intention to major in engineering and computer sciences (Figure 1, Radford, Fritch, Leu, 98 

Duprey, & Christopher, 2018).  99 

 100 

Figure 1. Gender gap in intent to major in STEM and non-STEM fields among U.S. college 101 
entrants. Data retrieved from National Center for Education Statistics High School Longitudinal 102 
Study, table 10 (Radford et al., 2018). See https://osf.io/n9jca/ for raw data and code. 103 
 104 
 105 

While previous research stressed the issue of a “leaky pipeline” between college and 106 

graduate school (with women being particularly likely to opt out, or be pushed out, at this 107 

educational transition) new data suggests that, in the U.S., the college-to-graduate school 108 

transition no longer leaks more women than men (Miller & Wai, 2015). As such, attention must 109 

be redirected to earlier transitions including middle school-to-high school (Legewie & DiPrete, 110 

2012), and high school-to-college (Shaw & Stanton, 2012), which are important both because 111 

they serve as gatekeepers for later STEM transitions, and also because “leaks” are still apparent 112 

at these junctions.  113 

 Even after persisting through early STEM education, women remain underrepresented 114 

throughout higher education in the U.S., again particularly in computer science and engineering 115 

(Table 1, Figure 2). While women now account for 57% of bachelor’s degrees across fields and 116 

50% of bachelor’s degrees in science and engineering broadly (including social and behavioral 117 

sciences), they account for only 38% of bachelor’s degrees in traditional STEM fields (i.e., 118 

engineering, mathematics, computer science, and physical sciences, Table 1). Moreover, over the 119 
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past 15 years, the percentage of female associate’s or bachelor’s degree holders has remained 120 

stagnant in many STEM subfields (Figure 2).  121 

Strikingly, the representation of women has even decreased in computer science, with 122 

female associate’s degrees dropping from 42% in 2000 to 21% in 2015, and the percent of 123 

female bachelor’s degrees dropping from 28% in 2000 to 18% in 2015 (National Science 124 

Foundation, 2018). Although explanations are elaborated in Part Two, the unique decreasing 125 

representation of women in computer science warrants consideration here. It is possible that 126 

increasing participation in pre-college computer science training (The College Board, 2018), 127 

coupled with the lack of early female role models or teachers in computer science, may 128 

increasingly lead young girls to pre-emptively opt out of college computer science because they 129 

have already internalized the stereotype that they do not belong (e.g., Master, Cheryan, & 130 

Meltzoff, 2016). Explaining the case of computer science representation remains a necessary 131 

direction for future research. 132 

Finally, it is worth noting that underrepresentation in doctorate-level STEM education is 133 

greatest at the top 10% of institutions (Weeden, Thébaud, & Gelbgiser, 2017). This suggests that 134 

factors including self-selection and/or status-based biases may continue to limit women’s success 135 

throughout higher education (see Part Two). 136 

 137 
Figure 2. Proportion of degree earners that are females across post-secondary education (2000 – 138 
2015) overall and in STEM subfields. Proportions of students in each field and degree that 139 
identify as female in (a) all science and engineering (S&E) fields including social and behavioral 140 
science (SBS), (b) traditional S&E fields (excluding social and behavioral sciences), (c) all non-141 
S&E fields, as well as STEM subfields of (d) Computer Science, (e) Mathematics, (f) 142 
Engineering, (g) Physics, and (h) Biology. Data retrieved from National Science Foundation 143 
(2018). See https://osf.io/n9jca/ for compiled raw data and code. 144 
 145 
 146 
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As women progress into the academic and non-academic workforce, they continue to be 147 

represented in lower numbers than men. In traditional STEM fields, despite earning 34% and 148 

41% of MAs and PhDs, respectively, women compose only 25% of the STEM workforce and 149 

27% of full-time, tenured professors (Table 2, Corbett & Hill, 2015; Hill, Corbett, & St Rose, 150 

2010; National Science Foundation, 2018). Additionally, although gains have been made in 151 

faculty representation since the 1970s, the increases for senior faculty are often slower than 152 

increases for junior faculty and postdoctorates (National Science Foundation, 2018). In the case 153 

of computer science, for example, the percentage of female senior faculty has been relatively 154 

slow over the past 15 years, decreasing only 5 percentage points from 24% in 1999 to 19% in 155 

2015, slower than the change in the percentage of junior faculty (which increased by 8 156 

percentage points). 157 

Importantly, this apparent stagnation in senior positions is partly a consequence of 158 

“demographic inertia,” or that women’s later entrance in STEM results in more junior than 159 

senior faculty (e.g., Hargens & Long, 2002). However, computer simulations of women’s career 160 

progress shows that gender gaps in higher status STEM positions are not entirely explained by 161 

inertia and the later entrance of women in STEM (Shaw & Stanton, 2012). These simulations 162 

show that, if the lack of female senior faculty were attributable entirely to inertia, women would 163 

have made faster progress than what is observed in the real data. As such, additional factors, 164 

such as that the greatest demands of childbearing on women often coincide with the timing of 165 

tenure decisions (Cech & Blair-Loy, 2019), also appear to contribute to the low numbers of 166 

female senior faculty. This conclusion is crucial because it suggests that we cannot assume time 167 

alone will solve the issue of gender disparities in STEM. 168 

 169 
 170 
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Taken together, the data on representation provide three conclusions. First, gender gaps in 171 

STEM course-taking and interest emerge as early as middle and high school, with these early 172 

transitions crucial in gatekeeping later participation in STEM. Second, gender gaps are most 173 

pronounced, and have even increased over time, for subfields of computer sciences and 174 

engineering. Gaps in these two subfields have a disproportionate impact on the participation and 175 

advancement of women in STEM because they represent over 80% of the STEM workforce 176 

(Landivar, 2013) and offer the highest monetary return on educational investment (Corbett & 177 

Hill, 2015). Third, the gender gap in the academic workforce is greatest in tenured and high-178 

status faculty positions, and these gaps cannot be solved by time alone. Differences in 179 

representation provide the most basic data for the issue under review: they show a consistent lack 180 

of women in STEM careers and, because women are as capable as men to succeed in STEM (see 181 

Part Two), the result is a loss of productivity and innovation to both STEM and society (Page, 182 

2018).  183 

1.2 Compensation 184 

Even when female scientists enter and persist in STEM careers, their economic compensation 185 

is not equal to that of their male colleagues (American Association of University Women, 2018; 186 

Blau & Kahn, 2017; National Science Foundation, 2018). In raw dollars, women in the U.S. 187 

STEM workforce are paid $20,000 less than men, receiving the equivalent of 79% of men’s 188 

earnings (Table 3).  189 

When such statistics are reported, however, they are often mistakenly assumed to mean that 190 

women make 79% of men’s earning, for the same work. This is not the case. The 79% statistic is 191 

confounded by additional gender differences in: (1) representation of subfields, with men 192 

overrepresented in private for-profit sectors versus non-profit sectors, as well as in high-paying 193 
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computer science/engineering versus lower-paying biology (see section 1.1 above); (2) seniority, 194 

with women’s later entrance in STEM leading women scientists to be younger on average , thus 195 

leading to lower compensation as a function of age and experience (National Science 196 

Foundation, 2018); and, finally, (3) the status of jobs held by men and women, with women more 197 

likely to occupy low-paying part-time positions, often to fulfill caregiving responsibilities (Cech 198 

& Blair-Loy, 2019). 199 

Nevertheless, even after controlling for correlated variables to compare men and women 200 

doing equal work at equal ages and experience levels, women in STEM are still found to receive 201 

9% less than men (National Science Foundation, 2018). Similarly, controlling for confounding 202 

variables does little to change the gender pay gap in male-dominated subfields (e.g., computer 203 

science and engineering; Michelmore & Sassler, 2017). This persistent difference is especially 204 

notable when compounded over a career. For example, recent simulations of gender pay gaps in 205 

medical sciences suggest that a pay gap of just 3% can accumulate into a difference of over 206 

$500,000 in additional accumulated wealth across a scientist’s career (Rao et al., 2018). 207 

Importantly, as with all the data presented in this paper, the gender pay gap does not affect all 208 

women and men equally. Intersections with marital and parental status reveal a “motherhood 209 

penalty” for women with children and a “fatherhood bonus” for men with children (Benard, Paik, 210 

& Correl, 2008; Correll, Benard, & Paik, 2007). For instance, with each child, mothers’ wages 211 

are reduced by approximately 5%, even after controlling for other factors such as work hours and 212 

experience. Indeed, experimental audit studies indicate that, for identical applicants differing 213 

only in parental status, mothers were offered approximately $11,000 less than women without 214 

children (a gap of 7%) , and approximately $13,000 less than fathers (a gap of 9%, Correll et al., 215 

2007). These same studies also indicate that a father is compensated approximately 4% more 216 
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than an identical male candidate without children. These pay gaps are, in turn, explained by the 217 

perception that parenthood builds men’s, but reduces women’s, commitment (Correll et al., 218 

2007), as well as the perception that mothers must trade between warmth and competence, while 219 

fathers are perceived as both warm and competent (Cuddy, Fiske, & Glick, 2004).  220 

Intersections between gender and race are also noteworthy for pay gaps: for instance, Latina 221 

women in STEM earn only 54% of White men’s earnings (American Association of University 222 

Women, 2018). Although intersectional data remains unfortunately rare, such findings reinforce 223 

that future research must collect fine-grained demographic data to better understand how 224 

outcomes (including compensation, representation, and recognition) operate across multiple 225 

identities.  226 

1.3 Grant Success, Authorship, and Awards 227 

Grant success. Unlike the data on gender differences in representation and compensation, 228 

gender gaps in overall grant success rates now appear small to non-existent. While early studies 229 

of funding patterns suggested that women were less likely to receive grants than men (e.g., in 230 

Sweden, Wenneras & Wold, 1997), this no longer appears to be the case among many U.S. 231 

funding agencies. Across the National Science Foundation (NSF), United States Department of 232 

Agriculture (USDA), and the National Institutes of Health (NIH), the percentage of female 233 

applicants receiving grants is now approximately equivalent to the percentage of male applicants 234 

receiving grants (Hosek et al., 2005; Pohlhaus, Jiang, Wagner, Schaffer, & Pinn, 2011; U.S. 235 

Government Accountability Office, 2015). This progress towards granting parity is likely the 236 

result of the conscious efforts of governmental funding agencies to collect the necessary data and 237 

conduct formal reviews of their own evaluation processes and possible biases (e.g., through the 238 

NSF Authorization Act of 2002; Hosek et al., 2005). In addition to such observational data 239 
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showing similar success rates for men and women, recent experimental studies also indicate 240 

similar granting rates for identical male and female grant applicants (Forscher, Cox, Brauer, & 241 

Devine, 2019). 242 

Nevertheless, subtle disparities linger. First, women are less likely to reapply (i.e., renew) 243 

their grants at NSF and NIH, with a 20% difference in renewal/reapplication rates at NIH and a 244 

5% difference in renewal/reapplication rates at NSF (Hosek et al., 2005; see also Pohlhaus et al., 245 

2011). Gender differences in the likelihood to renew a grant imply possible gender differences in 246 

research persistence (Hechtman et al., 2018), and may therefore be related to the aforementioned 247 

loss of female faculty at the junior-to-senior faculty transition.  248 

Second, crucial data are lacking from funding bodies that represent particularly male-249 

dominated subfields with an engineering or defense focus (e.g., NASA, Department of Defence, 250 

DARPA, Department of Energy), where larger gender gaps in grant success rates may emerge 251 

(U.S. Government Accountability Office, 2015). As long as such agencies fail to collect or report 252 

the necessary data, beliefs such as “DARPA does not fund women” will continue to circulate in 253 

the academic folklore. Such beliefs may dissuade applications and, as a consequence, reduce the 254 

likelihood of receiving top quality applications from both female and male candidates. 255 

Third, women appear less likely to apply for the top 1% of large grants at NIH (Hosek et al., 256 

2005). This difference in applying for the largest NIH grants may contribute to the observation 257 

that NIH grants held by women are, on average, smaller in dollar amounts than the grants held 258 

by men (Hosek et al., 2005; Oliveira, Ma, Woodruff, & Uzzi, 2019; Waisbren et al., 2008). 259 

However, observing overall differences in dollar amounts need not entail bias on behalf of the 260 

granting agency. Lower overall amounts may be due to either (1) women requesting less than 261 

men and therefore receiving less (suggesting no bias), or (2) women and men requesting similar 262 



GENDER IN STEM 

 

11 

11 

amounts but women receiving less (suggesting bias). NSF reports data on both the amount 263 

requested and received and finds no gender differences in either the amount requested or 264 

received, suggesting no bias. However, the NIH only reports data on the amount received, 265 

making it impossible to determine the existence (or absence) of bias because the amount received 266 

cannot be directly compared with the amount actually requested.  Collection and reporting of 267 

both requested and received amounts across applicant genders is foundational to identifying and 268 

understanding possible gender bias in STEM grants. 269 

Finally, recent studies of Canadian Institutes of Health Research revealed that grant 270 

reviewers told to focus on evaluating the “scientist” (rather than the “quality of the science”) 271 

were 4 percentage points more likely to fund grants from men over women (Witteman, 272 

Hendricks, Straus, & Tannenbaum, 2019; see also Tamblyn, Girard, Qian, & Hanley, 2018). This 273 

reinforces that evidence of lingering gender gaps in grant success rates are unlikely to be due to 274 

differences in the quality of women’s and men’s actual proposed research. but rather to the 275 

reviewer’s biased beliefs about women and men as researchers. 276 

Despite these subtle differences in how male and female scientists consider, and are 277 

considered by, granting agencies, the general trends of parity in grant success are notable when 278 

contrasted with the disparities in compensation discussed above. As such, identifying the factors 279 

that explain grant parity, including the possible role of transparency in federal agencies (versus 280 

privacy in salary information), will inform theories about the causes and solutions to gender 281 

disparities in STEM more broadly.  282 

Authorship. Like grant success, gender gaps in authorship of scientific publications are 283 

subtle. Aggregate statistics suggest that many fields and journals have attained gender parity in 284 

the success rates of female and male authors (Allagnat et al., 2017; Brooks & Della Sala, 2009), 285 
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and the majority of fields are on their way towards parity (Holman, Stuart-Fox, & Hauser, 2018). 286 

Nevertheless, some journals continue to favor manuscript submissions from authors of their own 287 

gender (Murray et al., 2019), and many fields, including computer science, physics, and math, 288 

suggest a gender gap in authorship that will persist for decades (Holman et al., 2018).  289 

Furthermore, gaps are most notable for last authorships (now regarded in many fields as the 290 

highest-status authorship position), where women are often represented at lower rates than would 291 

be expected given their representation in senior faculty positions (Table 4 vs. Table 2, Holman, 292 

Stuart-Fox, & Hauser, 2018; Shen, Webster, Shoda, & Fine, 2018; West, Jacquet, King, Correll, 293 

& Bergstrom, 2013). Additionally, although both male and female researchers have increased in 294 

publication rates over the past decade, some fields (e.g., psychology) have seen relatively greater 295 

increases among men, leading to an increasing gender gap in authorship over time (Ceci, 296 

Ginther, Kahn, & Williams, 2014; Holman et al., 2018). Finally, in contrast to parity in 297 

authorship across most other fields, the data from neuroscience continue to show that women 298 

publish significantly fewer first and last author papers than men (Schrouff et al., 2019; see also 299 

biaswatchneuro.com). 300 

Awards. Finally, awards for research in STEM remain male-dominated. Across 13 major 301 

STEM society awards, 17% of award winners were female (Lincoln, Pincus, Koster, & Leboy, 302 

2012) compared to the base-rates of representing 38% of STEM junior faculty and 27% of 303 

STEM senior faculty (Table 2). Underrepresentation is especially notable in prestigious awards: 304 

women represent 14% of recipients for the National Medal of Science, 12% for the Nobel Prize 305 

in Medicine, 6% for the American Chemical Society Priestly Medal, 3% for the Nobel Prize in 306 

Chemistry, 3% for the Fields Medal in mathematics, and 1% for the Nobel Prize in Physics 307 

(RAISE project, 2018).  308 
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While it could be that such underrepresentation is due, in part, to the relatively later entry of 309 

women into STEM (i.e., aforementioned “demographic inertia” Hargens & Long, 2002), such an 310 

explanation would not be applicable to early-career awards. In line with the notion of intertia 311 

accounting for award gaps, some early-career awards, such as the Presidential Early Career 312 

Award for Scientists and Engineers (PECASE) (38% women recipients among NSF nominees) 313 

and the Society for Neuroeconomics Early Career Award (40% women recipients) reveal award 314 

rates similar to the base rate of 38% of Junior Faculty. Nevertheless, other early-career awards 315 

continue to show disparities including the Society for Neuroscience Young Investigator Award 316 

(19% women recipients), and the Elsevier/VSS Young Investigator Award (25% women 317 

recipients). Moreover, one of the most prestigious early-career awards – the NSF Alan T. 318 

Waterman Award – has been won by only 6 women over the past 43 years (14% of recipients). 319 

These early-career data emphasize that, although some progress has been made, solving gender 320 

disparities in STEM awards is again not simply about waiting for women to “catch up” (Shaw & 321 

Stanton, 2012). 322 

Underrepresentation in research awards contrasts with overrepresentation in teaching and 323 

service awards (Metcalfe, 2015). For example, in astronomy, where the base-rate is that women 324 

receive 10% percent of PhDs, women receive 3% of scholarly awards but 15% of teaching and 325 

service awards (Popejoy & Leboy, 2018). As discussed in Part Two below, the reasons for such 326 

overrepresentation in teaching awards are likely complex, including women’s advantages in 327 

language and communication abilities, as well as differences in where women versus men are 328 

expected to succeed. Indeed, the recognition of women for teaching but not research aligns with 329 

the expectations that women are warm but incompetent (Fiske, Cuddy, Glick, & Xu, 2002; Glick 330 

& Fiske, 1996), and therefore should be good teachers but poor researchers. In sum, evidence is 331 
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strong that gender disparities in STEM encompass gaps in representation, compensation, 332 

research awards and, to a lesser extent, grant success and authorship.  333 

Part Two: Presumed Causes of Gender Disparities in Science 334 

In the past, a dominant assumption about gender disparities in STEM concerned women’s 335 

lack of ability due to biological, innate and/or immutable differences (Keller, 1985). Over time, a 336 

more complex possibility was added: observed gender differences may not be exclusively shaped 337 

by innate or immutable abilities but may also be influenced by sociocultural factors (Ceci et al., 338 

2014). Along a different dimension, it was previously assumed that the social barriers to 339 

women’s entrance and advancement in STEM were exclusively from the prejudices held by men 340 

about women. Over time, this assumption has also been revised: both men and women evaluators 341 

can be involved in gender discrimination (e.g., Moss-Racusin, Dovidio, Brescoll, Graham, & 342 

Handelsman, 2012). Finally, while the focus was previously on the biases of other people 343 

evaluating the work of women, a more complex thesis also looks at possible bias within both 344 

women and men themselves, including their own preferences, biology, and social experiences 345 

that may encourage opting in (or out) of certain careers (e.g., Diekman, Brown, Johnston, & 346 

Clark, 2010). Thus, the presumed causes of gender disparities in STEM have shifted over time as 347 

new evidence and interpretations emerge. 348 

Today, the debates surrounding the causes of gender disparities in STEM often settle 349 

around three inter-related hypotheses. Gender disparities may arise from (1) innate and/or 350 

socially-determined gender differences in STEM ability, (2) innate and/or socially-determined 351 

gender differences in STEM preferences and lifestyle choices, and (3) explicit and implicit biases 352 

of both men and women in perceptions of men and women’s work. 353 

2.1 Differences in Ability 354 
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Given the complexity of STEM careers, the abilities predicting success must be diverse. Yet 355 

for most of the 20th century, researchers focused almost exclusively on predicting gender 356 

differences in STEM success from single skills, such as math ability (Hyde, 2014). It was only at 357 

the end of the 20th century, after decades of data on standardized tests had accumulated, that 358 

evidence suggested the gender differences were rapidly closing for many cognitive abilities, 359 

including math ability (Feingold, 1988). Recent representative studies and meta-analyses 360 

reinforce this result, showing that gender gaps in overall math performance have dropped to 361 

trivial differences: studies of over 7 million students in state math assessments indicate gender 362 

differences of only d = 0.0065, meaning the averages of men and women on math assessments 363 

are almost perfectly overlapping (Hyde, Lindberg, Linn, Ellis, & Williams, 2008). And a meta-364 

analysis of 242 studies shows a mere difference of d = 0.05 on math performance, again 365 

indicating almost perfect overlap of men and women’s average performance (Lindberg, Hyde, 366 

Petersen, & Linn, 2010). The weight of the evidence therefore implies gender parity in math 367 

ability (Hyde, 2014, 2016; Zell, Krizan, & Teeter, 2015). 368 

In response, some researchers and public officials have argued that, while gender differences 369 

have disappeared in average mathematics ability (i.e., the middle of the distribution), men 370 

nevertheless remain overrepresented as high-performers (i.e., right-tail of the distribution; Ceci et 371 

al., 2014). On the one hand, nationally-representative samples indeed reveal slight but consistent 372 

advantages for boys on standardized math tests, with a 2:1 overrepresentation among math high-373 

performers from kindergarten (Penner & Paret, 2008) to grade 7 (Wai, Cacchio, Putallaz, & 374 

Makel, 2010). On the other hand, these same studies reveal that the gender gap in high-375 

performers has closed rapidly over time, moving from 13.5:1 in the 1980s, to 3.8:1 in the 1990s, 376 

to 2:1 today (Penner & Paret, 2007; Wai et al., 2010). This rapid closing of the gap on both 377 
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average and high-performing math ability (Hyde, 2014; Wai et al., 2010) challenges the 378 

assumption that differences are rooted in immutable traits.   379 

Additionally, gender differences in both average and high-performing math ability vary 380 

greatly across cultures (Else-Quest, Hyde, & Linn, 2010; H. Gray et al., 2019), across U.S. states 381 

(Pope & Sydnor, 2010), and across ethnic groups (Hyde & Mertz, 2009; Penner & Paret, 2008), 382 

providing evidence of mutability based on local contexts. Finally, gender differences in math 383 

performance are most notable when gender stereotypes are activated prior to a test: creating 384 

stereotype threat by framing a math test as “known to show gender differences” impairs females’ 385 

performance relative to framing the same test as “not showing gender differences” (Nguyen & 386 

Ryan, 2008; Spencer, Steele, Quinn, et al., 1999; but see Stoet & Geary, 2012). This further 387 

highlights the role of mutable beliefs rather than immutable biological traits as the most likely 388 

explanations of historic gender differences in math performance. Thus, there remains no 389 

compelling evidence that gender differences in math ability are immutable or biologically innate 390 

(Ceci et al., 2014; Ceci & Williams, 2010; Hyde, 2016; Spelke, 2005).  391 

Moreover, even an overrepresentation of 2:1 among math high-performers would not be 392 

sufficient to account for the nearly 5:1 disparity seen in the representation of senior faculty in 393 

STEM fields (Table 2), the 7:1 disparity seen in first vs. last authorship rates for some fields 394 

(Table 4), or differences in median salaries (Table 3). Other factors must therefore contribute, 395 

such as gender differences in academic self-efficacy (Dixson, Worrell, Olszewski-Kubilius, & 396 

Subotnik, 2016) or math confidence (Flanagan & Einarson, 2017). In sum, because gender 397 

differences in math ability (1) produce small to non-existent effects, (2) are disappearing over 398 

time, and (3) cannot fully explain the large and persistent gaps, it can no longer be said that 399 

women and men are treated differently in STEM because of different cognitive capacities in 400 
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mathematics. Recognizing this conclusion, researchers have turned to examining other abilities 401 

that may contribute to gender differences in STEM. 402 

Two additional skills relevant to STEM success are spatial and language ability, and both 403 

show consistent gender differences (Halpern et al., 2007). On many tests of spatial cognition, 404 

especially those involving 3D mental rotation tasks, men significantly outperform women, with a 405 

meta-synthesis of 70 meta-analyses revealing that men are approximately ½ a standard deviation 406 

above women (d = 0.57; Zell et al., 2015). However, even on 3D rotation tasks, gender 407 

differences fluctuate as a function of subject age, testing format, and test framing (Huguet & 408 

Régner, 2009; Voyer, 2011; Voyer et al., 1995), with reversals to female advantages even 409 

observed when mental rotation tasks are framed as “art tasks” rather than “math tasks” (Huguet 410 

& Régner, 2009). Furthermore, other aspects of spatial cognition reveal female advantages (e.g., 411 

object identity memory), or no gender differences (e.g., object location memory, Voyer, Postma, 412 

Brake, & Imperato-McGinley, 2007). 413 

In contrast to spatial cognition, language skills appear to consistently favor women (Halpern 414 

et al., 2007; Hyde & Linn, 1988; Miller & Halpern, 2014). Recent estimates from national 415 

assessments document female advantages of approximately ¼ of a standard deviation (d = -.27) 416 

for reading and ½ a standard deviation (d = -.54) for writing (Reilly, Neumann, & Andrews, 417 

2018). Moreover, gender gaps in language ability have not shown significant change from 1988-418 

2011 (Reilly et al., 2018). This implies that the causes of language differences – whether 419 

biological, as suggested by the overrepresentation of men with reading impairments (Halpern, 420 

Beninger, & Straight, 2011; Rabiner & Coie, 2000), and/or socio-psychological, as suggested by 421 

the sex-typing of language abilities as “female” (Halpern, Straight, & Stephenson, 2011; 422 
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Marinak & Gambrell, 2010) – have remained stable over time, unlike closing gaps for other 423 

abilities.  424 

Although often overlooked, the role of reading and writing are arguably just as relevant to 425 

STEM as math or spatial skills. The ability to comprehend verbal material and to communicate 426 

effectively through writing and speaking are obvious components of success in publications, 427 

grants, presentations, and effective STEM teaching or leadership. Indeed, long-term success in 428 

STEM careers is likely to be predicted by a set of skills, including abilities in language, spatial 429 

rotation, math, and more (Ackerman, Kanfer, & Beier, 2013). It is therefore worth focusing on 430 

the diversity of skills available within an individual rather than emphasizing any single quality.  431 

Differences in Preferences, Values, or Lifestyle Choices 432 

The cause of gender disparities in STEM has increasingly been linked to gendered roles, 433 

values, and lifestyle preferences (Ceci et al., 2014; Ceci, Williams, & Barnett, 2009; Ceci & 434 

Williams, 2011). In particular, the “goal congruity hypothesis” (Diekman et al., 2010) was so-435 

named to capture the idea that women make the choice, from both sociocultural pressures and 436 

innate psychological orientations, to opt out of STEM because they perceive their gendered goals 437 

to be incongruent with the nature of STEM work, the opportunities available in STEM, and their 438 

likelihood of success. Simply, women perceive a mismatch between their goals/values and the 439 

STEM environment. 440 

These values are argued to arise early in childhood, when boys and girls experience both 441 

social pressures and possibly innate inclinations to occupy different roles: boys are expected to 442 

(and, on average, do) prefer activities that are competitive and active, while girls are expected to 443 

(and, on average, do) prefer activities that are communal and involve helping (Eagly, 1987). 444 

These early-formed values cascade into later life, with women more likely to endorse communal, 445 
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group-serving, people-oriented, family, and altruistic values, and men more likely to endorse 446 

agentic, self-serving, thing-oriented, money, and status values (Diekman et al., 2010; Ferriman, 447 

Lubinski, & Benbow, 2009; Su, Rounds, & Armstrong, 2009; Weisgram, Dinella, & Fulcher, 448 

2011).  449 

Simultaneously, STEM environments are perceived, on both explicit self-reports and indirect 450 

implicit measures, to be environments that endorse power, status, competitiveness, and isolation 451 

(Diekman, Clark, Johnston, Brown, & Steinberg, 2011). Such qualities are therefore viewed as 452 

incompatible with the communal group-serving values that women (more than men) appear to 453 

endorse (Diekman, Weisgram, & Belanger, 2015). Analogously, evidence points to men 454 

avoiding communal group-serving environments (e.g., healthcare, early education, and domestic 455 

work) because these careers are viewed as incompatible with both the status-based and self-456 

serving values that men (more than women) appear to endorse (Block, Croft, & Schmader, 457 

2018). 458 

As a consequence of such mismatch between values and environments, women may be 459 

particularly likely to opt out of (and men particularly likely to opt into) subfields that are 460 

perceived to strongly endorse the “brilliance,” status, and competition (i.e., mathematics, 461 

engineering and computer science), thereby accounting for differences in representation across 462 

subfields (e.g., Leslie, Cimpian, Meyer, & Freeland, 2015; Meyer, Cimpian, & Leslie, 2015). 463 

Additionally, women may be more likely to select low-paying part-time positions to better 464 

facilitate family goals, whereas men may be more likely to select high-paying status-based 465 

positions, possibly contributing to the gender pay gap. Women may also be more likely to 466 

perform service activities to satisfy communal group-serving values, whereas men may be more 467 

likely to focus on research activities to satisfy agentic self-serving values, contributing to 468 
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disparities observed in service vs. research awards. The match between values and environments 469 

(i.e., goal congruity) may therefore play a role in explaining gender gaps across representation, 470 

pay, and recognition. 471 

Yet the question remains whether STEM environments are inherently incompatible with 472 

values that women are more likely to endorse, or whether generations of male-dominated STEM 473 

environments have led to a perception of incompatibility. If it is more about historical 474 

perceptions, then increasing the perception that a STEM environment can satisfy group-serving 475 

values should correspondingly increase women’s success and persistence in STEM.  476 

Indeed, describing STEM tasks and careers as emphasizing communal group-serving values 477 

(Diekman et al., 2015), helping (Weisgram & Bigler, 2006), or dedication (Bian, Leslie, Murphy, 478 

& Cimpian, 2018), rather than competition, isolation, or brilliance, increases women’s interest in 479 

pursuing and persisting in STEM. For example, when female general population participants 480 

read about a STEM internship or major that emphasizes dedication (vs. brilliance), they are 481 

approximately ½ a standard deviation more likely to report interest (Bian et al., 2018). Similarly, 482 

females in college are found to be more likely to feel like they belong in STEM after subtle 483 

environmental cues that emphasize STEM stereotypes of isolation or competition (e.g., Star Trek 484 

posters) are removed (Cheryan, Plaut, Davies, & Steele, 2009). Thus, the goal mismatch appears 485 

to be rooted in perception rather than inherent features of STEM environments. As such, it is 486 

important to examine where this perception comes from (Cheryan, Ziegler, Montoya, & Jiang, 487 

2017), especially the role of implicit and explicit biases in shaping perceptions of beliefs, values, 488 

and the environment. 489 

2.1 Explicit and Implicit Bias 490 
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Beliefs and stereotypes that associate men, more than women, with science, math, 491 

leadership, or careers have long been documented on explicit, self-report measures and 492 

representative polls (General Social Survey, 2019). Yet self-reports are limited in that 493 

respondents may be unwilling to state their full beliefs (for fear of appearing biased), and/or may 494 

be unable to state their full beliefs (because of limited introspective access to one’s own mind, 495 

Greenwald & Banaji, 1995). Recognizing these limitations, researchers have argued that biased 496 

beliefs can exist at both an explicit and implicit level – the latter being relatively more automatic, 497 

less conscious, and less controllable than the former. The most widely-used measurement of 498 

implicit biases, the Implicit Association Test (IAT, Greenwald, McGhee, & Schwartz, 1998), 499 

uses response latencies to indirectly capture the overlap between concepts such as “male” and 500 

“science” versus “female” and “arts.” 501 

Implicit and explicit biases are related but distinct psychological constructs (Nosek & 502 

Smyth, 2007). For instance, while a person responding to a survey may explicitly say that they 503 

believe both men and women are capable in science, the same person may nevertheless show 504 

faster responses when pairing male-science (and female-arts) words compared to when pairing 505 

male-arts (and female-science) words, suggesting that they hold implicit beliefs linking men 506 

(more than women) with science over arts. Crucally, explicit and implicit biases both contribute 507 

to predicting behaviors and outcomes (Kurdi et al., 2018) and are therefore both necessary to 508 

understand the operation of bias in STEM. Moreover, given the general disappearance of explicit 509 

bias against women in STEM (General Social Survey, 2019), it would be difficult to explain the 510 

slowness of change in women’s representation and success without considering the possibility 511 

that biased gender perceptions and evaluation may also emanate from mental operations outside 512 

conscious control. 513 



GENDER IN STEM 

 

22 

22 

To understand the possible role of implicit and explicit biases in STEM gender 514 

disparities, the extent of these biases needs to be examined. If implicit biases are only identified, 515 

for example, in older adults, men, or those from particular geographic regions, then the biases are 516 

unlikely to play a role in accounting for widespread gender gaps in STEM. If, however, implicit 517 

biases are found to be persistent and pervasive, then their role within STEM becomes more 518 

meaningful. Over two decades of research on implicit gender stereotypes has conclusively shown 519 

that gender biases in STEM are indeed prevalent across the lifespan, across genders, across 520 

nations, and across time. 521 

Implicit gender bias across the lifespan. Implicit gender-STEM stereotypes are 522 

documented from the earliest ages tested: by at least 6 years of age, both boys and girls implicitly 523 

associate math with boys more than with girls (Cvencek, Meltzoff, & Greenwald, 2011). Even in 524 

Singapore, a country where girls excel in mathematics, implicit stereotypes of 525 

boys=math/girls=reading are similarly early-emerging for both boys and girls (Cvencek, 526 

Meltzoff, & Kapur, 2014). This is striking as it suggests that biased beliefs may emerge even in 527 

the absence of evidence. At the same ages, children also endorse explicit stereotypes, including 528 

the belief that math is more for boys than girls (Cvencek et al., 2011), and that boys, more than 529 

girls, are “really, really smart” (Bian, Leslie, & Cimpian, 2017). 530 

New analyses of nearly 300,000 respondents from the Project Implicit Demonstration 531 

website (http://implicit.harvard.edu) extend these findings through adolescence and adulthood, 532 

providing similar conclusions of early-emergence (Figure 3). By elementary and middle school 533 

(respondents under 14 years old), 58% of respondents already show a strong, moderate, or slight 534 

implicit stereotype that men=science/women=arts, while only 17% show an opposite stereotype 535 

of women=science/men=arts and 25% show a neutral association, as measured by the IAT.  536 
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Notably, the strength of the implicit men=science/women=arts association increases 537 

slightly through the later lifespan: 68% of high schoolers, 71% of college students, 68-69% of 538 

early-career respondents (ages 22-40), 72-74% of mid-career respondents (ages 40-55), and 77% 539 

of older respondents (ages 55+) show implicit men=science/women=arts associations, with 540 

similar age-related trajectories in both women and men. Although these data are cross-sectional 541 

(making it difficult to disambiguate an age effect from an effect of historical changes over time), 542 

the increasing stereotype strength across ages nevertheless mirrors the trends of increasing 543 

underrepresentation from high school to college to full professorships. Age-related increases in 544 

stereotype strength may therefore represent either a cause and/or consequence of increases in 545 

gender disparities across career trajectories. 546 

 547 
Figure 3. Implicit men=science/women=arts stereotypes across the lifespan, by gender. Data 548 
retrieved from the Project Implicit Demonstration Website. See https://osf.io/n9jca/ for raw data 549 
and code. 550 
 551 
 552 
 Implicit gender bias across genders. Surprisingly, women and men hold similarly 553 

strong implicit gender-STEM stereotypes. Data from Project Implicit show that, overall, 69% of 554 

women and 72% of men express slight, moderate, or strong implicit men=science/ women=arts 555 

associations (see also Nosek et al., 2007). Nevertheless, gender differences in implicit 556 

stereotypes emerge among scientists from particular STEM subfields (Nosek & Smyth, 2011; 557 

Smeding, 2012; Smyth & Nosek, 2015): women employed in male-dominated subfields (e.g., 558 

math or engineering) express significantly weaker implicit men=science/women=arts stereotypes 559 

than men in those subfields, whereas women employed in female-dominated subfields (e.g., 560 

humanities) express significantly stronger stereotypes than men in those subfields. This suggests 561 

that women already in science may perceive science as equally applicable to women and men, 562 
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perhaps as a consequence of their own identification with science (e.g., Nosek, Banaji, & 563 

Greenwald, 2002), or being exposed to more female scientist role models (Dennehy & Dasgupta, 564 

2017). In contrast, women outside of science may neither identify with science nor be exposed to 565 

the same frequency of female scientists and may therefore associate STEM more with men than 566 

women. However, it is worth emphasizing that even women already in science still hold an 567 

implicit stereotype of men=science/women=arts (Smyth & Nosek, 2015), implying that 568 

identification alone may not be sufficient to override pervasive cultural stereotypes.  569 

 Implicit gender bias across countries. In every country where the IAT has been used, 570 

there is an association of men=science/women=arts (Miller, Eagly, & Linn, 2015; Nosek et al., 571 

2009). No country shows the opposite association. Yet despite this widespread prevalence, there 572 

is also meaningful variability. Nation-level differences in the strength of implicit gender-science 573 

stereotypes are correlated with nation-level differences in gender gaps on national 8th grade math 574 

and science assessments (Nosek et al., 2009), as well as nation-level differences in gender gaps 575 

in STEM representation (Miller et al., 2015). These results are important because they highlight 576 

(1) that implicit gender-science stereotypes are not necessarily innate or inherent, since they vary 577 

across countries, and (2) that implicit gender-science stereotypes can help explain gender 578 

disparities in STEM, since variability in stereotypes correlates with variability in STEM 579 

achievement and representation. 580 

Implicit gender bias across time. Explicit gender stereotypes and attitudes against 581 

working women and female scientists have decreased markedly over the past several decades 582 

(CNN, 2012; General Social Survey, 2019; Huang, Osborne, & Sibley, 2018). Yet absence of 583 

bias has not been achieved: even on self-reported attitudes and beliefs, 25% of U.S. respondents 584 

in 2018 agreed or strongly agreed that it was better for a a man to work and a woman to stay 585 
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home (General Social Survey, 2019). Moreover, subtle biases are even more persistent, with 586 

women still perceived as “warm” but “incompetent” (Fiske, 2018; Haines, Deaux, & Lofaro, 587 

2016), and still described with words such as “caring” and “emotional,” rather words such as 588 

“competent” or “intelligent” (Garg, Schiebinger, Jurafsky, & Zou, 2017). While some progress 589 

has been made, gender bias continues in both explicit and subtle ways. 590 

In line with this simultaneous progress and stability, new analyses of the Project Implicit 591 

dataset examining change in implicit men=science/women=arts stereotypes from 2007-2016 592 

reveal that implicit gender stereotypes have decreased by approximately 16% overall 593 

(comparable to change in implicit race and skin-tone attitudes, Charlesworth & Banaji, 2019b). 594 

Crucially, however, this change appears to be largely isolated to women (whose implicit bias has 595 

decreased by 19%), with relatively little change observed among men (decreased by only 6%, 596 

Figure 4). This result is unique, as almost every other implicit attitude or stereotype shows 597 

parallel change between men and women; there appears to be a particular intransigence among 598 

men’s implicit gender-science stereotypes. Moreover, although overall trends of change in 599 

implicit gender stereotypes are both surprising and encouraging, the biases remain far from 600 

neutrality and suggest relative persistence over time.  601 

 602 
Figure 4. Change over time in implicit men=science/women=arts stereotype, by gender (2005-603 
2017). Weighted monthly means (weighting to control for sample change over time) are plotted 604 
in thin gray (for men) and black lines (for women). Decomposed trend lines (removing 605 
seasonality and random noise) are plotted in thick gray (for men) and black lines (for women). 606 
Data retrieved from the Project Implicit Demonstration Website. See https://osf.io/n9jca/ for raw 607 
data and code; see (Charlesworth & Banaji, 2019b) for further details on analysis method 608 
including controls for alternative explanations such as sample change over time. 609 
 610 

In sum, implicit gender-science stereotypes are present across the lifespan, in both men 611 

and women, in every nation, and across time. Such persistence and prevalence in implicit biases 612 

match the prevalence of gender disparities in STEM representation, pay, and recognition. 613 
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Together, these data reinforce (1) that gender-science stereotypes exist both in explicit 614 

statements and on implicit measures that tap less controllable beliefs, (2) that gender-science 615 

stereotypes are not isolated to some people in only some parts of the world but, rather, are 616 

widespread, and (3) that this pervasiveness, as well as variability within and across regions, 617 

provides an opportunity for deeper theoretical understanding of the mechanisms behind gender 618 

disparities in STEM. 619 

The operation of implicit and explicit gender biases in STEM. If implicit and explicit 620 

biases indeed play a causal role in gender disparities in STEM, how would one know? What 621 

would evidence for bias look like? Complementary sources of evidence would be most 622 

persuasive. First, if bias is operating, then observational evidence of gender disparities (e.g., data 623 

on representation, pay, and awards/recognition) should reveal persistent disparities even after 624 

alternative explanations or correlated variables are accounted for (e.g., subfield, part-time versus 625 

full-time job status). For example, the aforementioned 9% pay gap that persists after controlling 626 

for alternative explanations implies that an additional causal mechanism (i.e., bias) may be 627 

operating.  628 

Second, if bias is operating, then correlational evidence should reveal a relationship 629 

between the magnitude of gender disparities and the magnitude of implicit or explicit gender 630 

stereotypes. This is suggested, for example, in the finding that larger gender gaps on national 631 

science and math assessments are positively correlated with stronger implicit gender-science 632 

stereotypes on the IAT, even after controlling for explicit stereotypes and alternative 633 

explanations (Nosek et al., 2009). 634 

Third, the strongest evidence for bias is experimental. In particular, experimental resume 635 

and audit studies can show that identical candidates (with the same resume and qualifications) 636 
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receive differential treatment exclusively due to gender, and that the extent of such differential 637 

treatment is predicted by evaluators’ explicit and implicit gender stereotypes. With these three 638 

standards of evidence, the possible operation of bias is examined in (1) hiring and compensation, 639 

(2) grants, publications and awards, and (3) organizational and academic culture. 640 

Hiring and compensation. Evidence for the operation of gender biases in hiring and 641 

compensation comes primarily from experimental audit studies showing that women applicants 642 

in STEM are less likely to be hired and also receive lower starting salaries than men with 643 

identical records (Milkman, Akinola, & Chugh, 2015; Moss-Racusin, Dovidio, Brescoll, 644 

Graham, & Handelsman, 2012; Reuben, Sapienza, & Zingales, 2014; Steinpreis, Anders, & 645 

Ritzke, 1999; but see Williams & Ceci, 2015). To illustrate one such study, Moss-Racusin and 646 

colleagues (2012) asked faculty from biology, chemistry, and physics to evaluate the application 647 

of a prospective lab manager on their hire-ability, competence, suggested salary, and 648 

deservingness of mentoring. Candidates’ applications were identical with the exception of 649 

whether the candidate’s name was female or male.  650 

Six results from this study are notable: (1) despite identical resumes, the female candidate 651 

was perceived as less hire-able than the male candidate; (2) the female candidate was offered the 652 

equivalent of 88% of the male candidate’s salary; (3) the female candidate was perceived to be 653 

less deserving of mentoring than the male candidate; (4) both male and female faculty evaluators 654 

were more likely to select and more generously compensate and mentor male candidates; (5) the 655 

extent of differential evaluation was mediated by the perception of greater competence in male 656 

than female candidates; and (5) the extent of this perceived competence gap was, in turn, 657 

moderated by the strength of faculty’s subtle gender bias (measured via self-reported modern 658 

sexism or beliefs that are benevolent but paternalistic; Swim, Aikin, Hall, & Hunter, 1995). 659 
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Together, these findings highlight the operation of subtle gender biases as a mechanism behind 660 

hiring, compensation, and mentoring disparities (Moss-Racusin et al., 2012). 661 

Importantly, implicit biases measured through the Implicit Association Test (IAT) have 662 

also been shown explain such gender disparities. For instance, Reuben and colleagues (2014) 663 

asked participants (“employers”) to hire a candidate for a simple math task, and were given a 664 

choice between two candidates who were matched on performance but not gender. Further, in 665 

some conditions, employers were given information about the candidates’ past performance on 666 

the math task. The results provide three noteworthy conclusions.  First, when employers had no 667 

information other than the candidates’ gender, the employers (both male and female) were half 668 

as likely to hire the female candidate than the male candidate, implying a baseline preference for 669 

males over females. Second, this gender-biased hiring was reduced, but not eliminated, when 670 

employers were given information about the two candidates’ identical past performance, 671 

indicating that the employers were not sufficiently updating their beliefs. That is, if employers 672 

had sufficiently updated following evidence of equivalent performance, then hiring should also 673 

have been equivalent between male and female candidates. Third, both the extent of the initial 674 

hiring bias and the extent of the updating bias were correlated with employers’ implicit 675 

stereotypes associating men=math & science/women=liberal arts. Thus, implicit bias may help 676 

explain not only initial gaps in hiring and representation but also the persistence of these gaps 677 

even in the face of evidence showing women’s capacities and success in STEM. 678 

 Large-scale correlational data are consistent with these experimental findings. On explicit 679 

measures of bias, the greater the number of academics in a STEM field who endorse the beliefs 680 

that (1) brilliance (rather than dedication) is required for success, (2) men are more brilliant than 681 

women, and (3) women are not suited to scholarly work, the lower the representation of female 682 
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faculty in those fields (Leslie et al., 2015; Meyer et al., 2015). Similarly, the higher the 683 

endorsement of an explicit association between science and male, the lower the number of 684 

female faculty in that field (Smyth & Nosek, 2015). Importantly, these correlations between 685 

representation and explicit stereotypes remain significant after controlling for proxies of personal 686 

values (e.g., perceived selectivity/competitiveness of the field, working part-time vs. full-time to 687 

satisfy family values). Thus, the role of bias may persist above values and lifestyle choices. 688 

Women’s representation in STEM is also correlated with implicit measures of gender bias. 689 

First, the more men majoring in a STEM field express the implicit men=science/women=arts 690 

stereotype, the lower the number of women in that field (Smyth & Nosek, 2015). Second, the 691 

more a nation expresses the implicit men=science/women=arts stereotype, the lower the number 692 

of women in STEM in that nation (Miller et al., 2015). Third, the more a field describes 693 

professors with traits of brilliance and genius (as measured indirectly through language in 694 

teaching evaluations), the lower the number of women in that field (Storage, Horne, Cimpian, & 695 

Leslie, 2016). Again, statistically significant correlations between implicit stereotypes and 696 

representation remain after controlling for measures of mathematics aptitude, field selectivity, or 697 

hours worked (i.e., part-time/full-time), again suggesting a role for bias above alternate 698 

explanations such as ability or values.  699 

Nevertheless, evidence from these experimental and correlational studies needs to be 700 

reconciled with data from the National Science Foundation, the National Center for Education 701 

Statistics, and faculty surveys reporting that, from 1995-2003, women applying for 702 

professorships in STEM were hired at rates commensurate to their application rate, implying no 703 

hiring biases (National Academy of Sciences, 2010). Additionally, a recent audit study suggests 704 
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that, in fields of biology, psychology, and engineering, women appear to have a 2:1 advantage in 705 

hiring for tenure-track positions (Williams & Ceci, 2015).  706 

Explaining such discrepancies will likely require many factors, including (1) changes over 707 

time in the focus on equitable hiring practices and pro-active efforts to reconcile past gender 708 

disparities (leading earlier studies to show more bias than later studies), (2) experimental 709 

differences in the measured outcomes (e.g., hiring a lab manager vs. evaluating a candidate for a 710 

math task vs. hiring a tenure-track faculty) and the fields studied (e.g., psychology vs. 711 

engineering), and/or (3) applicant differences (e.g., women may have a higher threshold and be 712 

more self-selective for applying to jobs; Ceci et al., 2014). Continued research is needed to 713 

resolve correlational, experimental, and observational evidence, as well as to understand 714 

disproportionately lower hiring rates and compensation of mothers, racial minority women, 715 

women in high-status positions, and women in engineering and computer science.  716 

Publications, grants and awards. Observational evidence, reviewed in Part One, suggests 717 

the encouraging result of overall gender parity in authorship, grants, and awards in STEM. 718 

Nevertheless, subtle gender differences persist on indicators such as (a) last authorship positions 719 

(Holman et al., 2018), (b) application rates for the top 1% of grants (Hosek et al., 2005), and (c) 720 

rates of research versus service awards (Metcalfe, 2015; Popejoy & Leboy, 2018). While these 721 

data suggest the operation of bias because gender disparities persist after accounting for 722 

alternative explanations, compelling experimental evidence for the operation of implicit and 723 

explicit biases in publications, grants, and awards remains limited (Eagly & Miller, 2016).  724 

With respect to gender bias in academic publications: audit studies indicate that publications, 725 

conference abstracts, and fellowship applications from men are more likely to be accepted, rated 726 

as higher quality and indicating more competence, and given more collaboration interest than 727 
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quality-matched materials from women (Knobloch-Westerwick, Glynn, & Huge, 2013; 728 

Krawczyk & Smyk, 2016; Wenneras & Wold, 1997). These few studies imply that subtle 729 

disparities in publications may arise from biased evaluations from peer reviews.  730 

On the other hand, removing gender (i.e., by masking the author’s gender through double-731 

blind reviews) does not appear to increase the rate of publication success for women (Tomkins, 732 

Zhang, & Heavlin, 2017; Webb, O’Hara, & Freckleton, 2008). While it is possible that the lack 733 

of efficacy in double-blind review is due to men producing better publications (for many reasons 734 

including differences in caregiving demands, or differences in risk-taking with “big” research 735 

ideas), it may be more likely due to the fact that author gender can be detected even without the 736 

author’s gendered name. Indeed, author gender could be determined using cues such as style of 737 

writing (Argamon, Koppel, & Fine, 2003), word use (Kolev, Fuentes-Medel, & Murray, 2019), 738 

and overall tendency to self-cite (Eagly & Miller, 2016). Thus, reviewers’ implicit or explicit 739 

biases may be able to persist even under double-blind conditions because the reviewers can still 740 

detect author gender. 741 

The operation of gender bias in grants and awards has also received limited experimental 742 

study. One recent experimental audit study shows no evidence of gender bias in initial grant 743 

reviews at NIH (Forscher et al., 2019). Additionally, a review screening 170 papers identified 744 

only one study that directly assessed the effect of gender bias in grant review (Tricco et al., 745 

2017). This study found that removing gender through double-blinding did not increase the 746 

proportion of women’s successful grant applications (Ledin, Bornmann, Gannon, & Wallon, 747 

2007), although (as aforementioned) double-blind conditions may not entirely eliminate 748 

evaluators’ ability to detect applicants’ gender and the conclusions are therefore limited.  749 
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Finally, to our knowledge, there remains no experimental evidence that directly measures the 750 

role of implicit or explicit biases in the persistent gap in research versus service awards (Lincoln 751 

et al., 2012; Popejoy & Leboy, 2018), suggesting an important focus for future research. While 752 

numerous cognitive biases (e.g., shifting standards, halo effects, confirmation bias) are likely to 753 

disrupt objectivity in the review of publications, grants, and awards (Kaatz, Gutierrez, & Carnes, 754 

2014), further research is needed to experimentally quantify the role of such biases. 755 

Organization and academic culture. Beyond disparities of representation, compensation, 756 

and recognition, implicit and explicit biases may also operate in the experiences of the 757 

organization and academic culture. Gender differences in experiences of a hostile culture have 758 

received increasing attention through the #metoo movement and highly-publicized allegations of 759 

harassment. Large-scale empirical reports also indicate that hostile culture is a persistent and 760 

pervasive problem: at least half of all female academics in STEM (versus 19% of male 761 

academics in STEM) report experiencing sexual harassment, and even greater numbers (78%) of 762 

females in male-dominated STEM workplaces report experiencing gender-based discrimination 763 

(Funk & Parker, 2018; National Academies of Sciences Engineering and Medicine, 2018).  764 

The operation of bias in producing these gender differences in organizational experiences is 765 

suggested by audit studies showing that a female scientist is offered less mentorship relative to 766 

an identical male scientist as a result of the evaluators’ biases (Correll et al., 2007; Moss-Racusin 767 

et al., 2012). This decreased mentoring may, in turn, hamper female scientists’ feelings of 768 

belonging and identification and exacerbate feelings of a hostile climate. Indeed, women in 769 

STEM are more likely than men to report a lack of belonging (Cheryan & Plaut, 2010; Cheryan 770 

et al., 2017; McPherson, Park, & Ito, 2018), a lack of support and free expression (Xu, 2008), a 771 

lack of mentorship and role models (Cheryan & Plaut, 2010; Cheryan, Siy, Vichayapai, Drury, & 772 
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Kim, 2011), and a lack of feeling identified with or competent in STEM (Ertl, Luttenberger, & 773 

Paechter, 2017; Spencer, Steele, & Quinn, 1999), including on implicit measures (Nosek et al., 774 

2002).  775 

Finally, correlational studies show that the extent of reported gender-based harassment in an 776 

academic field is correlated with the strength of men’s implicit gender stereotypes in that field, 777 

as both gender-based harassment and implicit gender stereotypes are greatest in male-dominated 778 

fields (Dresden, Dresden, Ridge, & Yamawaki, 2018; see also Smyth & Nosek, 2015). Thus, 779 

although no direct experimental evidence can be offered for the operation of bias in producing 780 

hostile organizational climates, correlational data, audit studies on mentoring, and observational 781 

data on belonging, together suggest a possible role for implicit and explicit biases that is worthy 782 

of attention (Funk & Parker, 2018; National Academies of Sciences Engineering and Medicine, 783 

2018). 784 

Part Three: How? Proposed Solutions to Gender Disparities in Science 785 

When faced with the type of data presented in Parts One and Two, nearly every STEM 786 

organization has had to consider the ways to address the biases, both inside and outside women 787 

themselves, that limit women’s full participation in STEM (Corbett & Hill, 2015; Hill et al., 788 

2010; Lebrecht, Bar, Barrett, & Tarr, 2012; National Academy of Sciences, 2006, 2010; National 789 

Science Foundation National Center for Science and Engineering Statistics, 2017; Valantine & 790 

Collins, 2015). Crucially, because the issues of gender in STEM involve human beliefs and 791 

decision-making that seem familiar to all individuals, there are often well-intentioned 792 

interventions based only on personal experiences or intuitions and not grounded in evidence or 793 

routine evaluations. Such approaches may backfire. For example, Dobbin and Kalev (2013) 794 

showed that most diversity training implemented from the 1960s to the early 2000s had either no 795 
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impact or even slightly reduced the diversity of the workforce (see also, Paluck & Green, 2009). 796 

Addressing gender bias in STEM should therefore be treated with rigorous evidence, as would be 797 

expected of any other STEM project (Kang & Kaplan, 2019). This section provides a brief 798 

review of recent and rigourous evidence-informed and evaluated interventions that focus on 799 

reducing gender disparities in STEM by changing individual minds/behavior (i.e., individual-800 

level gender bias) or organizational cultures/practices (i.e., organization-level gender bias). 801 

3.1 Changing Individual-Level Gender Bias 802 

Individual-level bias emerges in both “perceivers” (e.g., individuals making decisions about a 803 

person at the time of recruiting, hiring, or promoting), as well as in “targets” themselves (e.g., 804 

women’s and men’s own beliefs about themselves in STEM). Individual-level interventions 805 

therefore differ in whether they focus on reducing the biases of perceivers or targets.  806 

First, to reduce the biases of perceivers, and to increase their willingness to promote change, 807 

interventions using a “habit-breaking” approach have been shown to effectively reduce both 808 

racial and gender biases (Carnes et al., 2015; Devine, Forscher, Austin, & Cox, 2012; Devine et 809 

al., 2017; Forscher, Mitamura, Dix, Cox, & Devine, 2017). These interventions assume that 810 

implicit biases are like “habits.” As such, bias is best addressed by making participants aware of 811 

the biased habits they may have through education on the science of implicit bias and its 812 

consequences for behavior. After promoting bias awareness, participants in the “habit-breaking” 813 

intervention are equipped with strategies argued to reduce bias in the mind. For example, 814 

participants are taught techniques such as “putting oneself in another’s shoes” (perspective-815 

taking), thinking of people from other groups as individuals rather than just as homogenous 816 

group members (individuation), and generating examples of people from other groups who 817 

challenge stereotypical assumptions (e.g., Marie Curie; counterstereotype exposure). While some 818 
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of these strategies have shown mixed effects when implemented in isolation – especially 819 

perspective-taking (Catapano, Tormala, & Rucker, 2019), and intergroup contact (Paluck, Green, 820 

& Green, 2018) – the combination of strategies, coupled with the educational approach, show 821 

promise in addressing gender disparities in STEM.  822 

To illustrate: in a cluster-randomized-controlled trial of 92 STEM departments, faculty 823 

members in departments that received the 2.5 hour “habit-breaking” workshop reported more 824 

awareness of implicit bias and more actions to promote gender equity, even after a delay of three 825 

months (Carnes et al., 2015). These individual-level changes also trickled up into organization-826 

level changes in both culture (with greater experiences of belonging reported by both men and 827 

women; Carnes et al., 2015), and practices (with more gender-equitable hiring; Devine et al., 828 

2017). Indeed, while the number of women hired in control departments remained unchanged 829 

over two-years, the number of women hired in intervention departments increased by 18%. Thus, 830 

“habit-breaking” appears to have real-world effectiveness in STEM. 831 

Although promising, the habit-breaking intervention nevertheless requires a relatively large 832 

time commitment and trained educators. As such, it may not be easily and widely applied across 833 

organizations. Partly to address scalability, the Video Interventions for Diversity in STEM (or 834 

VIDS, https://academics.skidmore.edu/blogs/vids/) adopt similar approaches to the “habit-835 

breaking” interventions by promoting gender bias literacy through freely-available videos 836 

consisting of six 5-minute presentations, each discussing the results of a peer-reviewed study on 837 

gender bias. VIDS has been found to successfully reduce explicit gender biases, increase 838 

awareness of everyday bias, and increase self-efficacy to confront bias among both general 839 

public and academic faculty participants (Hennes et al., 2018; Moss-Racusin et al., 2018; Pietri 840 

et al., 2017), and may be applicable for many organizations.  841 
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Finally, interventions using evidence-based confrontation, in which participants are provided 842 

with objective, personalized evidence of having exhibited gender bias in evaluations, have also 843 

shown some effectiveness in reducing perceivers biases (Parker, Monteith, Moss-Racusin, & 844 

Van Camp, 2018). Specifically, these interventions have been found to increase participants 845 

negative self-directed affect (e.g., guilt) and, as a consequence, increase participants’ concern 846 

about, and intentions to control, future bias. However, confrontation interventions also produce 847 

defensiveness (Parker et al., 2018) and, without labor-intensive personalization, are often 848 

dismissed (Gulker, Mark, & Monteith, 2013). Additionally, they appear to be less effective in 849 

changing the biases of men than women (Handley, Brown, Moss-Racusin, & Smith, 2015; Moss-850 

Racusin, Molenda, & Cramer, 2015). Given the dominant presence of men in STEM, this lower 851 

efficacy for men is a non-trivial concern, and evidence-based confrontations may therefore need 852 

further study. 853 

Beyond the biases of the perceivers, there is also a role for the self-defeating perceptions, 854 

attitudes, and beliefs held by those in underrepresented groups (e.g., women themselves, Jost & 855 

Banaji, 1994; Jost, Banaji, & Nosek, 2004). To this end, interventions have focused on 856 

increasing identification, belonging, and persistence among the targets of discrimination. With 857 

this goal, promising interventions have found that contact with female (vs. male) peers, 858 

professionals, and teachers improves women’s implicit identification with STEM, as well as 859 

greater self-efficacy and more effort on STEM tests (Stout, Dasgupta, Hunsinger, & McManus, 860 

2011). Indeed, even a one-hour interaction with a female role-model in STEM increases the 861 

probability that Grade 12 students in France will enroll in a selective male-dominated STEM 862 

class by up to 30% (Breda et al., 2018). And a single letter from a female role-model can 863 
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improves course grades and reduces dropout among U.S. introductory psychology and chemistry 864 

students (Herrmann et al., 2016). 865 

Crucially, in contrast to the assumption that women can only achieve benefits from female 866 

role models (which inadvertently places an additional service burden on female mentors), the 867 

gender of the role model appears to be less important than their ability to challenge stereotypes 868 

(Cheryan et al., 2011; Fuesting & Diekman, 2017). For example, if a male role model challenges 869 

STEM stereotypes (e.g., by wearing a plain t-shirt rather than a t-shirt reading “I code therefore I 870 

am”, or expressing that they like to hang out with friends rather than that they like to watch 871 

anime), the counterstereotypical male role model appears to be just as helpful as a female role 872 

model in promoting women’s beliefs about success in STEM (Cheryan et al., 2011). 873 

Encouraging the wide adoption of these simple counterstereotypical signals among both male 874 

and female faculty may therefore be an actionable step to help foster women’s own success 875 

beliefs in STEM. 876 

3.2 Changing Organization-Level Gender Bias  877 

STEM environments exhibit biases that have consequences for women’s safety, performance, 878 

and perceived belonging (see section 2.3). While much of this hostile climate comes from the 879 

accumulation of individual biases, a climate is also grounded in structural features, ranging from 880 

the possibility of flexible work arrangements (Fuller & Hirsh, 2018), to the presence of 881 

stereotype-reinforcing decorations in physical spaces (Cheryan et al., 2009). Allowing flexible 882 

work arrangements in STEM can have beneficial effects on the treatment and advancement of 883 

women (particularly mothers) because the arrangements both endorse and facilitate communal 884 

and family values. Although there are stigmas surrounding flexible work arrangements (e.g., 885 

Cech & Blair-Loy, 2014), the benefits appear to outweigh these costs: indeed, flexible work can 886 
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reduce the wage gap for mothers by reducing within-organization disparities and allowing 887 

mothers to enter high-wage establishments (Fuller & Hirsh, 2018). Given that female junior 888 

faculty with children and working partners spend 20 hours more per week on household and 889 

childcare duties than their male counterparts (Harvard University Office of the Senior Vice 890 

Provost, 2014), focusing on reducing or supporting women’s household and childcare duties may 891 

be crucial to ensuring equal advancement in STEM. 892 

Large-scale organizational change, such as implementing flexible work policies, can often be 893 

slow. These changes can therefore be supplemented by more immediate interventions to improve 894 

the ongoing experiences of women in STEM. For instance, as discussed in section 2.2, 895 

improvements in both men and women’s belonging in STEM can be achieved by removing cues 896 

of masculine stereotypes in classrooms (e.g., Star Wars posters; Cheryan et al., 2009).  897 

Similarly, increasing the perception that STEM environments can satisfy group-serving 898 

values – such as by emphasizing the daily tasks of scientists that involve mentorship or helping – 899 

leads female college students to report more interest and investment in STEM careers (Diekman 900 

et al., 2011). Changing such subtle linguistic cues can also have positive outcomes on self-901 

reported STEM interest for children as early as elementary and middle school (Colvin, Lyden, & 902 

León de la Barra, 2013; Rhodes, Leslie, Yee, & Saunders, 2019; Tyler-Wood, Ellison, Lim, & 903 

Periathiruvadi, 2012; Weisgram & Bigler, 2006). It is these types of changes (e.g., emphasizing 904 

the opportunities of group-serving values) that are anecdotally described to lead to milestone 905 

achievements, such as the recent success of women composing an impressive 48% of Carnegie 906 

Mellon’s incoming 2016 computer science class (Spice, 2016). While we may take for granted 907 

how we describe and decorate STEM environments, reducing the subtle stereotypicality in 908 

environments can improve women’s self-reported feelings of belonging and interest in STEM. 909 
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As such, critically evaluating and, if necessary, changing our own organizations and workplaces 910 

(including job postings or office decorations) may be a small but effective action to promote 911 

gender equity.  912 

The emerging trends in interventions to reduce individual and organizational gender biases 913 

are promising. However, additional research is needed (1) using both lab-based experiments and 914 

randomized-control-trial designs in the field, (2) assessing implicit and explicit stereotypes as 915 

both outcomes and mediators of behavior change, (3) looking at differences across STEM 916 

subfields, and (4) addressing intersectional biases towards minorities and mothers. Additionally, 917 

research that identifies the overarching characteristics of successful interventions is crucial 918 

(Dobbin & Kalev, 2013; Moss-Racusin et al., 2014; Paluck & Green, 2009). At present, it 919 

appears that, regardless of the target (individual or organizational), interventions are more 920 

effective when they (1) are grounded in theory and evidence, (2) involve active learning and 921 

responsibility rather than lecturing or forced training, (3) avoid assigning personal blame or guilt, 922 

and (4) include evaluation plans of intervention efficacy (Kang & Kaplan, 2019). 923 

Conclusion 924 

 The mental make-up of men and women is more similar than different (Hyde, 2005, 925 

2014). Despite these similarities, the outcomes and experiences of men and women in science, 926 

technology, engineering, and mathematics (STEM) continue to exhibit differences. Gender gaps 927 

in STEM are evident in representation (particularly in high-status positions and in subfields of 928 

computer sciences and engineering), compensation and, to a lesser extent, grants, publications, 929 

and awards. The weight of the evidence no longer supports that these gaps are the result of innate 930 

ability differences. Instead, gender gaps in STEM appear, in part, to arise from differences in 931 

perceived values and opportunities in environments, as well as pervasive implicit and explicit 932 
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biases that shape the perceptions of these values and environments. While initial evidence to 933 

address disparities is promising, much remains to be understood about the most effective 934 

interventions to reduce individual and organizational gender biases. The pursuit of understanding 935 

and addressing the causes of gender disparities STEM is crucial to bring our often-biased 936 

behaviors and decisions in line with our values of equality and fairness (Charlesworth & Banaji, 937 

2019a). Yet perhaps more importantly, ensuring the full participation of the highest quality 938 

candidates (including women) guarantees improvement in the productivity and innovation of 939 

STEM discoveries, technologies, and applications that, ultimately, will improve societies. 940 

  941 
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Table 1.  
Representation of females across post-secondary education in STEM. 
 
 S&E 

fields 
(all) 

S&E 
fields 

(without 
SBS) 

Non-
S&E 
fields 
(all) 

Engineering Computer 
Science Mathematics Physical 

Sciences Biology 

College 
(Associates) 44% 27% 63% 14% 21% 29% 42% 67% 

College  
(BA) 50% 38% 61% 20% 18% 43% 39% 60% 

Graduate 
School 
(MA) 

45% 34% 64% 25% 30% 41% 35% 58% 

Graduate 
School 
(PhD) 

45% 41% 59% 23% 23% 28% 33% 53% 

Note: Data retrieved from the National Science Foundation Science and Engineering Indicators 
(2018), using the most recent available data from 2015. Within the NSF report, data on 
associate’s degrees are from appendix table 2-18, data on bachelor’s degres from appendix table 
2-21, data on master’s degrees from appendix table 2-27, and data on doctoral degrees from 
appendix table 2-29. As per NSF, science and engineering S&E fields (all) also include social 
and behavioral sciences (SBS), in addition to the traditional STEM fields of computer science, 
mathematics and statistics, physical sciences, and engineering. The traditional STEM fields alone 
(excluding the SBS fields) are referred to as S&E fields (without SBS) in the table. See 
https://osf.io/n9jca/ for compiled raw data and code.  
 
 
Table 2.  
Representation of females across career stages in STEM.  
 
 

S&E 
fields 
(all) 

S&E 
fields 

(without 
SBS) 

Non-
S&E 
fields 
(all) 

Engineering Computer 
Science Mathematics Physical 

Sciences Biology 

Post-
doctorates 43% 42% 51% 23% 33% 20% 30% 50% 

Junior 
Faculty 43% 38% 51% 22% 26% 38% 29% 50% 

Senior 
Faculty 31% 27% 39% 14% 19% 21% 20% 39% 

Employed 
Workforce 28% 25% 50% 15% 24% 43% 28% 48% 

Note: Data retrieved from the National Science Foundation Science and Engineering Indicators 
(2018), using the most recent available data from 2015. Within the NSF report, data for academic 
positions are from appendix tables 5-15, and data for employed workforce from appendix table 
3-12. As per NSF, science and engineering (S&E) fields (all) also include social and behavioral 



 

 2 

sciences, in addition to the more traditional STEM fields of computer science, mathematics and 
statistics, physical sciences, and engineering. The traditional STEM fields alone (excluding the 
SBS fields) are referred to as S&E fields (without SBS) in the table. See https://osf.io/n9jca/ for 
compiled data and code.  
 
 
Table 3.  
Gender pay gap in STEM and non-STEM fields. 
 
 

S&E 
fields 
(all) 

Non-
S&E 
fields 
(all) 

Engineering Computer 
Science Mathematics Physical 

Sciences Biology 

Men 95,000 75,000 95,000 100,000 89,000 83,000 68,000 
Women 75,000 50,000 88,000 86,000 77,000 60,000 55,000 
Gender pay 
gap 20,000 25,000 7,000 14,000 12,000 23,000 13,000 

Note. Median annual salaries (in dollars) of all full-time workers in 2015. Data retrieved from 
appendix table 3-17 (National Science Foundation, 2018).  
 
Table 4.  
Percentage of female authors in STEM and non-STEM peer-reviewed publications, by author 
status. 
 
 Computer 

Science Physics Mathematics Chemistry Biology Psychology Education Health  

First 
Author 17% 17% 19% 35% 43% 50% 61% 50% 

Last 
Author 15% 13% 19% 21% 29% 40% 49% 46% 

Any 
Authorship 16% 17% 18% 30% 37% 48% 55% 49% 

Note: Data were most recent available data (2016) retrieved from Holman, Stuart-Fox, and 
Hauser (2018). Original data was collected from 36 million authors from over 100 countries 
publishing in over 6000 journals, accessed via PubMed and arXiv databases. 
 


