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The study of how cognition and society interact is a complex endeavor that 
demands multiple methods and tools. Yet research in social cognition has 
only begun to capitalize on unsupervised machine learning (UML) tools that 
can uncover hidden patterns in data. In this tutorial, we introduce UML as a 
complementary approach to traditional statistical methods. We illustrate four 
methods (K-means clustering, Density-Based Clustering of Applications With 
Noise [DBSCAN], Principal Component Analysis [PCA], and Market Basket 
Analysis) applied to data from Project Implicit and the Implicit Association. 
We show how UML can identify patterns and relationships that conventional 
methods might overlook. Throughout, we provide clear (and openly avail-
able) code and highlight important researcher decision points in implement-
ing UML in social cognition work. By bringing the advances of UML into 
social cognition, we will be better equipped to tackle larger, more diverse, or 
multilevel data sets that reveal the complexities of our social world.
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The study of social cognition aims to understand how cognitive processes shape 
the perception, retention, and utilization of information about social groups 
(e.g., stereotypes; Fiske, 1993). Social cognition research has a lengthy history 
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(Higgins & Bargh, 1987), but rapidly evolving computational approaches are 
now reshaping how we study social cognitive phenomena (e.g., by using natu-
ral language processing and agent-based modeling; Charlesworth et  al., 2021; 
Kosinski, 2019). Keeping up with these computational approaches may seem 
daunting, but they are grounded in familiar machine learning (ML) tools that 
many researchers already understand. Indeed, ML has been widely used in 
social cognitive research, including to predict policy support for sexual minori-
ties (Hatzenbuehler et  al., 2020), classify hate speech on social media (Davani 
et  al., 2023), and identify patterns of regional intergroup bias (Hehman et  al., 
2021). However, tutorials on ML for social scientists remain rare and primarily 
focus on supervised ML (SML, used for prediction; Yarkoni & Westfall, 2017; see 
also Pargent et al., 2023). 

In this tutorial, we therefore review ML principles and introduce common unsu-
pervised ML (UML, primarily used for uncovering patterns in data sets) tools to 
reduce barriers for social cognition researchers in using UML to study the link 
between cognitive processes and social behavior. Of note, our goal is not to pro-
pose UML as a replacement for hypothesis-driven, theory-based approaches, but 
rather to show how UML can complement traditional methods by uncovering 
new patterns, highlighting gaps in existing theories, and inspiring new research 
questions. This tutorial aims to guide researchers toward a flexible approach that 
leverages both data-driven discoveries and theory-driven insights—a blend of 
top-down and bottom-up perspectives.

We organize the remainder of the article as follows: We briefly review SML as a 
contrast for understanding UML. We then review four UML tools (K-means clus-
tering, Density-Based Clustering of Applications With Noise [DBSCAN], Princi-
pal Component Analysis [PCA], and Market Basket Analysis [MBA]). Each tool 
is applied to large-scale survey data on race attitudes (Project Implicit; Xu et al., 
2024), with all R code and data provided via OSF. 

SUPERVISED MACHINE LEARNING

SML involves predicting a target variable, with a goal of finding the best combina-
tion of features to predict this target (i.e., the model is “supervised” by the target 
variable). For example, one might try to predict implicit pro-White/anti-Black bias 
(i.e., Implicit Association Test [IAT] scores) using input variables like explicit atti-
tudes or political ideology. SML tools encompass regression, for continuous out-
comes like IAT scores, and classification, for categorical outcomes like “high bias” 
or “low bias.” Data are divided into training (typically ~60%–80% of the data) and 
testing sets (typically ~20%–40% of the data). The model “learns” relationships 
from the training set, and then evaluates out-of-sample accuracy on the testing set 
using metrics like root-mean-square error (RMSE), mean-absolute error (MAE), or 
R². In choosing a final SML model, the researcher has to balance between underfit-
ting, which oversimplifies the model and leads to systematic bias, versus overfit-
ting, which overcomplicates the model and reduces generalizability (Yarkoni & 
Westfall, 2017). (See Table 1 for definitions of terms used in SML.)
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UNSUPERVISED MACHINE LEARNING

Unlike SML, which predicts specific outcomes (e.g., IAT D-scores), UML identifies 
natural clusters or structures in the data without requiring a predefined target (or 
dependent) variable. Thus, rather than having a single focal variable “supervis-
ing” the process, UML enables researchers to discover hidden relationships across 
all variables simultaneously. 

The field of social cognition grapples with several complex questions that tra-
ditional methods alone often struggle to answer—questions that UML methods 
are particularly well positioned to examine. For example, understanding how 
individuals’ multiple intersecting identities (e.g., race, gender, class) shape their 
own and others’ social cognitive processes is a key challenge (Settles & Buchanan, 
2014). To address this, clustering methods like hierarchical clustering or OPTICS 

TABLE 1. Glossary of Terms Used in Supervised Machine Learning

Term Definition

Features Independent variables or predictors in a data set. For example, features could include 
explicitly measured attitudes, U.S. state, political ideology, and other relevant 
demographic variables used to predict IAT D-scores.

Target variables The outcome variables that the model aims to predict. For example, the target variable 
could be the IAT D-score, which measures implicit pro-White/anti-Black attitudes.

Classification A type of SML task aimed at predicting categorical outcomes. For example, 
classification could involve predicting categories like “high bias,” “moderate bias,” or 
“low bias” based on the IAT D-scores and other features.

Overfitting When a model learns the noise in the training data rather than the underlying pattern, 
leading to poor generalization to new data. For instance, if the model is too tailored to 
the specific IAT D-scores and explicit attitudes data set, it may perform poorly on new, 
unseen data.

Underfitting When a model is too simple to capture the underlying pattern in the data, resulting 
in poor performance on both the training and test data sets. For example, underfitting 
occurs in the context of predicting IAT D-scores and explicit attitudes if the model 
fails to accurately capture the complex relationships between variables, such as the 
subtle influences of political ideology or demographic factors, leading to inaccurate 
predictions across different data sets.

Flexibility The ability of a model to fit a wide variety of data patterns. More flexible models 
can capture more complex relationships but may be more difficult to interpret. For 
example, a Random Forest model might capture complex interactions between 
political ideology and IAT D-scores, but its results may be less interpretable than those 
from a linear model.

Interpretability The extent to which a model’s predictions can be understood and explained. Simple 
models like linear regression are usually more interpretable, allowing researchers to 
understand how explicit attitudes and political ideology predict IAT D-scores.

Bias The tendency of a model to make systematic errors in one direction. High bias can lead 
to underfitting, where the model is too simple to capture the underlying pattern in the 
data, such as not fully accounting for the relationship between political ideology and 
IAT D-scores.

Note. IAT = Implicit Association Test.
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could reveal how individuals naturally group across these dimensions, offer-
ing insights that challenge or refine existing theories. Similarly, variability in 
prejudice-reduction intervention effectiveness remains an open question in the 
field (Paluck et  al., 2021). Topic modeling approaches, such as Latent Dirichlet 
Allocation (LDA) and Structural Topic Modeling (STM), could analyze partici-
pants’ open-ended responses to identify nuanced patterns in how interventions 
are perceived. Even within traditionally studied groups, researchers have noted 
significant diversity, such as racial heterogeneity (Martinez, 2024). Graph-based 
techniques like the Louvain method could map these within-group dynamics to 
uncover novel structures of identity or shared experience. These examples high-
light how UML complements theory-driven approaches while enabling research-
ers to explore new dimensions of social cognition.

This tutorial focuses on introducing both common (e.g., K-means, PCA) and 
less familiar (e.g., DBSCAN, MBA) UML methods to provide researchers with a 
foundation for expanding their analytic toolkit. Specifically, we showcase tech-
niques to cluster participants based on key measures, such as attitudes or demo-
graphics (K-means, DBSCAN), reduce complex data sets into principal components 
(PCA), and identify co-occurrence patterns at the item level (MBA). In the follow-
ing sections, we provide step-by-step guidance on each UML method, emphasiz-
ing key decision points—such as determining the optimal number of clusters or 
interpreting component loadings. We also include R code for implementing each 
method, shown in figures with executable code in black and comments in green (not 
treated as R code). For additional support, a set of YouTube videos (linked in the 
supplemental materials and available on GitHub:  https://github.com/jedoriscar 
/Unsupervised-Machine-Learning.git) walks users through the implementation of 
all discussed methods.

K-MEANS AND DBSCAN CLUSTERING

Social cognition researchers often aim to identify meaningful patterns within 
populations, especially across complex attitudes, beliefs, and behaviors. How-
ever, traditional analyses typically rely on predefined categories, such as political 
affiliation or socioeconomic status. In contrast, clustering enables the discovery of 
nuanced categories that emerge from intersections of relevant variables—such as 
implicit and explicit attitudes or political ideology. For example, imagine you are a 
prejudice researcher developing an intervention. You recognize that the effective-
ness of your intervention may vary across participants, but you find it challeng-
ing to explain this variability using your current variables. You know from past 
research that people’s explicit and implicit attitudes toward Black Americans are 
associated with political ideology (Charlesworth & Banaji, 2022; Nosek et al., 2007). 
However, traditional analyses often struggle to uncover the complex patterns that 
arise when politics, implicit attitudes, and explicit attitudes are considered simul-
taneously. Clustering is useful here because it can uncover natural patterns among 
combinations of these attitudes and ideologies, revealing distinct psychological 
profiles (e.g., individuals with liberal ideologies, pro-White/anti-Black implicit 

https://www.youtube.com/playlist?list=PLm9NcMCi0RG3R6_ZwufLZQoXUsPGz0JHn
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attitudes, and anti-Black explicit attitudes). Identifying such profiles could help 
tailor interventions more precisely, enhancing their effectiveness for different sub-
sets of participants (Gaertner & Dovidio, 2000).

Notably, clustering can be used for both empirically driven data mining and as a 
theoretically guided testing tool, allowing researchers to compare discovered clus-
ters with patterns predicted by existing theories. In other words, clustering, as with 
all UML tools, is most useful when used with theoretical predictions and researcher 
expertise to ensure that the results are grounded and generalizable to other settings.

Finding Clusters. Clusters are identified by grouping observations that are most 
similar to each other. Clustering algorithms do this by using a similarity measure 
(e.g., correlations) or a distance measure (e.g., Euclidean distance) between pairs of 
observations or variables (e.g., respondents, if clustering people; or variables, if 
clustering variables). Pairwise similarities are then summarized in a matrix. Vari-
ous clustering algorithms (e.g., K-means/modes, DBSCAN) are used to find opti-
mal groupings; the choice of algorithm depends on data type (e.g., numeric vs. 
discrete), and the hypothesis (e.g., a hypothesized hierarchical structure).

In this tutorial, we focus on K-means and DBSCAN clustering algorithms 
because they are widely used yet offer distinct approaches to clustering (Malik & 
Tuckfield, 2019): K-means is useful for its simplicity and efficiency with large data 
sets, while DBSCAN is better suited for identifying clusters of arbitrary shapes 
and effectively handling noise. For a brief summary of their respective strengths, 
limitations, and usage guidelines, see Table 2.

K-Means Clustering. K-means is a clustering algorithm that groups observa-
tions into K clusters by assigning each observation to the nearest centroid (i.e., the 
average position within a cluster) and iteratively adjusting centroids to minimize 
distances. Standardizing variables before clustering ensures that no single vari-
able skews the process, making distance calculations consistent. While methods 
like elbow plots and silhouette scores (Kodinariya & Makwana, 2013) help sug-
gest an optimal K, the choice ultimately rests on researcher expertise. Automated 
approaches (Roy, 2021) can support this selection, but they lack the theoretical 
context and interpretational abilities of researchers. Because K-means is sensitive 
to initial centroid placement, multiple runs (i.e., different initial random positions 
of the centroids) or robustness checks are recommended. (See Table 3 for defini-
tions of terms used in K-Means Clustering.)

Implementing K-Means Clustering. To implement K-means clustering, we fol-
low four steps: (a) select and standardize the variables for analysis, (b) determine 
the optimal number of clusters (K), (c) apply the K-means algorithm and per-
form cross-validation, and (d) interpret the results. For Step 1 in our example, we 
chose to cluster people based on their responses to three variables: Political Iden-
tity (7-point Likert scale with higher scores indicating liberalism), IAT bias (with 
higher D-scores indicating pro-White/anti-Black implicit bias), and a Feeling 
Thermometer (11-point “thermometers,” with higher scores indicating warmer 
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TABLE 2. Strengths, Weaknesses, and Usage Guidelines for K-Means and DBSCAN

Method Strengths Weaknesses When to Use When Not to Use

K-means Simple to interpret, 
computationally 
efficient, and works 
well with large 
datasets and spherical 
clusters.

Sensitive to initial centroid 
selection, may struggle 
with nonspherical clusters. 
Requires predefined choice 
of K, which can influence 
clustering results.

Ideal when the 
researcher has a 
rough idea of the 
number of clusters (K) 
and expects clusters 
to be spherical and 
relatively balanced.

Not suitable if clusters 
are expected to be 
nonspherical, highly 
imbalanced, or if K is 
unknown and difficult 
to estimate. Also less 
effective for clusters with 
varying densities and 
noncontinuous data.

DBSCAN Effective for 
identifying clusters of 
varying shapes and 
sizes, can handle 
noise points, and 
doesn’t require the 
number of clusters (K) 
to be specified.

Requires careful parameter 
tuning, especially for 
epsilon (the neighborhood 
radius), and may struggle 
with high-dimensional 
data. The choice of epsilon 
and minimum points 
(minPts) is data-sensitive 
and requires researcher 
judgment.

Useful when there 
are clusters of varying 
shapes and noise in 
the dataset, or when 
clusters do not form 
simple geometric 
shapes. Ideal for 
datasets where the 
number of clusters is 
unknown.

Less effective for high-
dimensional data or 
when clusters have 
very similar densities. 
Also challenging when 
the dataset lacks clear 
boundaries, as DBSCAN 
may incorrectly label 
noise points.

TABLE 3. Glossary of Terms Used in K-Means Clustering

Term Definition

Centroid In clustering methods like K-means, the centroid is the average position of all 
data points in a cluster in multidimensional space. For example, the centroid 
could represent the typical profile of individuals within a cluster based on their 
IAT scores and explicit attitudes, such as those with moderate explicit bias but 
low implicit bias.

Within-cluster sum of squares Within-Cluster Sum of Squares measures the compactness of clusters by 
summing the squared differences between each participant’s responses and 
the cluster centroid. Lower Within-Cluster Sum of Squares could indicate more 
cohesive clusters of individuals with similar IAT scores and attitudes.

Cross-validation Cross-validation is the process of refining a model or clustering solution through 
successive iterations until it stabilizes. For example, this would involve running 
the clustering algorithm multiple times to ensure that the identified clusters 
consistently capture meaningful groupings of implicit and explicit biases.

Distance measure A distance measure, such as Euclidean distance, quantifies how similar or 
different data points are in a multidimensional space. For example, it could 
help determine the similarity between participants based on their responses to 
implicit and explicit attitude measures, aiding in identifying groups with similar 
biases.

Note. IAT = Implicit Association Test.
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feelings toward Black people). In addition, we standardize the variables so that 
each variable contributes the same amount to the clustering process. 

Step 2 is to decide on the number of clusters (K). While the choice of parameter 
can be guided by previous literature, it can be challenging to determine for novel 
data sets with many variables. The elbow method is a visualization tool that helps 
identify the optimal number of clusters by minimizing within-cluster distance 
(such that the data points within a given cluster are more similar to each other). 
This method (illustrated in Figure 1) involves plotting the total within-cluster sum 
of squares (WSS; i.e., the average distance of the data points from their centroids) 
against the number of clusters. The optimal K is indicated by the elbow point, 
where the WSS shifts from rapidly decreasing to a slower decline, indicating that 
additional clusters provide limited explanatory value). 

In the R code (Figure 1a), we calculate the total WSS for different K-values and 
then visualize the elbow plot. Figure 1b shows the tradeoff between clustering 
quality (WSS) and parsimony (number of clusters). The elbow method addresses 
this trade-off by identifying the point where incremental improvement in WSS 
diminishes as the number of clusters increases. In our example, because WSS 
decreases more slowly after K = 5 (Figure 1b), we select this number of clusters. 
Researchers should look for a noticeable “bend” in the plot, although this may not 
always be sharply defined, as in our example. To aid interpretation, additional 
criteria such as the ratio of between-cluster variance to within-cluster variance 
can provide guidance. Here, we chose K = 5 (i.e., 5 latent clusters of respondents), 
which gave the highest ratio of between-cluster to within-cluster variance. Specifi-
cally, the ratio was 40.9% for K = 3 and 60.9% for K = 5. This K-selection process 
helps balance under- and overfitting by minimizing within-cluster variance while 
also avoiding the overfitting that can occur with too many clusters. 

In Step 3, we apply the K-means algorithm to calculate the distance between 
individual data points (i.e., respondents) and cluster centroids using Euclidean 
distance. We then cross-validate with 25 random cluster coordinate assignments 
to ensure that they remain consistent regardless of the initial cluster assignments 
(see Figure 2). 

Interpreting K-Means Clustering. Step 4 in the clustering process is interpretation. 
In Table 4, we highlight the five cluster means identified through the K-means 
algorithm, showing how respondents in each cluster scored, on average, across 
our three key variables. In Figure 3, we visualize the shape of these clusters on a 
two-dimensional plot. Although the clustering occurs across multiple dimensions, 
the two-dimensional plot provides a simplified representation to aid interpreta-
tion and communication. Cluster 1 exhibits a relatively low pro-White/anti-Black 
bias, slightly liberal political identity, and relatively cold explicit attitudes toward 
Black people. Cluster 2 is conservative, shows a slight pro-White/anti-Black bias, 
and has cold feelings toward Black people. Cluster 3 is liberal, has a pro-White/
anti-Black bias, and has warm explicit feelings toward Black people. We find that 
Cluster 4 has a pro-Black/anti-White bias, is slightly liberal, and has warm feelings 
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FIGURE 1. Using the Elbow Method to determine the optimal number of clusters. This figure 
demonstrates the implementation and output of the Elbow Method to identify the optimal 
number of clusters (K) in K-means clustering. Panel A shows the R code used to calculate 
the total within-cluster sum of squares (WSS) for a range of cluster numbers (1 to 10 in this 
example). Panel B presents the WSS values plotted against the number of clusters (K). The 
“elbow point,” where the rate of decrease in WSS slows, indicates the optimal number of 
clusters. This approach allows researchers to balance cluster compactness with the number of 
clusters. Panel A: Code Implementation of the Elbow Method; Panel B: Plot of Within-Cluster 
Sum of Squares (WSS) Against Number of Clusters (K).

A B

toward Black people. Cluster 5 has a pro-White/anti-Black bias, is conservative, 
and has the most warm feelings toward Black people.

Social cognition theories can be used to guide interpretation of these clusters 
of respondents. Clusters 3 and 5 align with the concept of aversive racism, where 
individuals hold underlying prejudices (revealed by their IAT bias) that conflict 
with their egalitarian self-concept (Dovidio & Gaertner, 2004; Pearson et al., 2009). 
However, their distinct political identities (Cluster 3 is liberal, Cluster 5 is con-
servative) suggest that the origins of their aversive racism may differ, necessitat-
ing tailored approaches for anti-bias education (Vitriol & Banaji, 2024; Vitriol & 
Moskowitz, 2021). Cluster 4 has a pro-Black/anti-White bias and warm feelings 
toward Black people. Researchers interested in understanding the factors asso-
ciated with more positive racial attitudes could explore what differentiates this 
group from others. Identifying such factors may provide insight into the condi-
tions under which individuals develop more egalitarian attitudes. Clusters 1 and 2 
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FIGURE 2. R Code for performing K-means clustering. This figure illustrates the R code used to 
perform K-means clustering on the scaled data set. The code specifies the number of clusters 
(K = 5) and runs the algorithm 25 times with different random initializations to ensure a stable 
solution with the lowest total within-cluster sum of squares. The output of the kmeans() function 
includes cluster assignments, centroids, and measures of fit, such as total within-cluster sum of 
squares (compactness) and between-cluster sum of squares (separation).

TABLE 4. K-Means Clustering: Means of the Key Variables Across Respondents Assigned to Each of the 
5 Clusters

Variable
Cluster 1  

(n = 2303)
Cluster 2 

(n = 2771)
Cluster 3 

(n = 3070)
Cluster 4 

(n = 2636)
Cluster 5 

(n = 3075)

IAT D-score 0.171 0.305 0.412 −1.381 0.368

Political Identity 0.811 −0.906 0.854 0.351 −0.944

Feeling Thermometer 
(Black)

−1.07 −1.14 0.628 0.575 0.712

Note. IAT = Implicit Association Test. All variables are Z-scored. Positive Political Identity scores indicate liberalism, 
positive IAT scores indicate pro-White/anti-Black bias, and positive Feeling Thermometer scores indicate warmer 
feelings toward Black people.

seem to represent explicitly racist individuals, but they potentially differ in their 
motivations, as suggested by their differing political identities. 

Density-Based Clustering of Applications With Noise (DBSCAN). In our K-means 
example, Cluster 3 displayed overlap with other groups, likely because it included 
multiple subgroups (see Figure 3 for this overlap). This scenario suggests that we 
might find a better solution using the DBSCAN algorithm. Unlike K-means, which 
requires specifying the number of clusters (K) and assumes spherical cluster shapes, 
DBSCAN identifies clusters based on the density of points and does not require 
a predefined number of clusters. This makes DBSCAN particularly useful when 
clusters are nested within one another and have arbitrary shapes, or when data sets 



Unsupervised Machine Learning and Social Cognition	 203

A B

FIGURE 3. Visualizing K-means clustering results. This plot visualizes the K-means clustering 
results, grouping data points (represented as dots) into clusters based on their assignments. 
Each convex hull outlines the boundaries of a cluster, while colors and shapes distinguish 
between different clusters. The plot is displayed in two dimensions, using the first two 
principal components (Dim1 and Dim2) to project the high-dimensional data. Panel A: Code 
Implementation for K-Means Visualization; Panel B: Visual Output of K-Means Clustering 
Results.

TABLE 5. Glossary of Terms Used in DBSCAN

Term Definition

Density In DBSCAN, density refers to the number of data points packed closely together in a 
given area. For example, density could help identify clusters where participants have 
similar IAT scores, indicating where attitudes naturally group.

Epsilon (ε) Epsilon in DBSCAN is the maximum distance between two points to be considered 
neighbors. For example, with IAT scores, a smaller epsilon groups individuals with 
very similar scores, while a larger epsilon includes those with broader similarities.

Core points In DBSCAN, core points are data points that have a sufficient number of neighboring 
points within the epsilon distance. For example, these points could help define 
clusters, representing central members of a group with similar implicit and explicit 
biases in IAT data.

Note. DBSCAN = Density-Based Clustering of Applications With Noise; IAT = Implicit Association Test.
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have a lot of noise (see Table 5 for a glossary of terms used in DBSCAN). DBSCAN 
is widely utilized in social science research, such as analyzing clusters of opinions 
on natural disasters (Mustakim et al., 2021) or grouping consumers based on their 
geo-tagged social network data (Fan et al., 2021). 

The DBSCAN algorithm requires a parameter (typically denoted as ε) that 
defines the radius within which points are considered neighbors. Points with a 
sufficient number of neighbors (at least MinPts) within this radius become core 
points. The algorithm starts with an arbitrary core point and assigns it as the first 
cluster, then adds nearby points within the ε radius to the cluster. If a point is close 
enough to multiple core points, it is added to the cluster. Points not close enough 
to any core points are considered “noise” and are left unclustered. A second clus-
ter is created when a new core point, with enough neighboring points within ε, is 
identified outside the reach of the first. This process repeats, with each new core 
point potentially forming a new cluster if it is sufficiently distant from existing 
clusters, allowing DBSCAN to identify multiple clusters of arbitrary shapes within 
the data.

Implementing DBSCAN. To implement DBSCAN, we follow three steps using the 
same numeric and standardized variables from our K-means example: (a) deter-
mine the optimal parameters (e.g., ε, MinPts); (b) apply the DBSCAN algorithm to 
identify core points (see Figure 4); and (c) interpret the results. 

For Step 1 (see Figure 4a for code), we can use plotting (as we did for K-means) 
to determine the optimal ε value. Specifically, we use k-nearest neighbors (k-NN) 
plotting (Figure 4b) to identify an elbow point, after which increasing the ε does 
not significantly improve the model’s explanatory value. In our plot, the elbow 
point for ε is between 0.5 and 0.6. In R (Figure 4a) we iterate with different ε values 
within that range and find that ε = 0.61 and MinPts = 5 lead to the largest noise 
reduction as well as similar sample sizes within each of the clusters. 

Interpreting DBSCAN. In Table 6, we present the means of key variables across the 
seven clusters identified using DBSCAN. Clusters 1 and 3 are comparable to Clus-
ter 4 from the K-means example. These clusters are liberal and are characterized 
by relatively pro-Black explicit attitudes and pro-Black implicit biases (indicated 
by the negative IAT D-scores in Table 6). Cluster 2, by contrast, can be described as 
“conflicted racists” because they are liberal, hold anti-Black explicit attitudes, yet 
still exhibit pro-Black/anti-White implicit attitudes. Clusters 5, 6, and 7 represent 
overt racists, characterized by highly conservative views, pro-White/anti-Black 
implicit attitudes, and explicitly anti-Black explicit attitudes. 

Comparing these findings with our K-means analysis, we observe similarities in 
identifying aversive racism and differences in attitudes across political ideologies. 
However, DBSCAN’s ability to handle varying densities provided a more nuanced 
understanding, especially in identifying two additional clusters beyond those 
identified through the K-means algorithm. Figure 5 demonstrates DBSCAN’s abil-
ity to identify clusters with diverse shapes and densities, making it effective for 
nonspherical data structures that K-means may miss. However, this adaptability 
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A B

FIGURE 4. Visualizing k-nearest neighbors (kNN) distances for DBSCAN. Panel A shows the 
R code used to generate the kNN distance plot, a diagnostic tool for selecting the optimal 
epsilon (eps) value in DBSCAN clustering. Panel B displays the resulting kNN distance plot, 
with the red dashed line marking the chosen epsilon (eps = 0.55). Points below this threshold 
are part of dense clusters, while those above may be classified as noise. The “elbow” in the 
curve highlights the natural inflection point, guiding the selection of an appropriate eps value 
for effective clustering. Panel A: Code Implementation for K-Means Visualization; Panel B: kNN 
Distance Plot for DBSCAN Clustering.

can introduce overlap if parameters like ε (the radius) and MinPts (minimum 
number of points) are not carefully optimized (see Figure 5b for visualization of 
overlap). Fine-tuning these parameters can reduce overlap, enabling clearer sepa-
ration between clusters.

DIMENSION REDUCTION AND ASSOCIATION RULES MINING

Data sets in the social sciences are becoming increasingly complex (Kosinski, 2019), 
with increasing numbers of variables often across massive samples of partici-
pants. For example, consider the Project Implicit data sets, with tens of millions of 
respondents and more than 200 variables that capture overlapping constructs (e.g., 
multiple indicators of explicit racial attitudes). These data sets are ideal for dimen-
sion reduction, which seeks to reduce many variables to a smaller subset while still 
retaining most of the variability, or for association rule mining, which identifies 
patterns and relationships among variables without reducing their number.

In this section, we focus on two techniques: (a) Principal Component Analy-
sis (PCA), a widely used dimension reduction method, and (b) Market Basket 
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TABLE 6. DBSCAN Clustering: Means of the Key Variables Across Respondents Assigned to Each of the 7 Clusters

Variable
Cluster 1 

(n = 2033)
Cluster 2 

(n = 1514)
Cluster 3 

(n = 3557)
Cluster 4 

(n = 3967)
Cluster 5 
(n = 460)

Cluster 6 
(n = 1128)

Cluster 7 
(n = 1156)

IAT D-Score −0.188 −0.017 −0.078 −0.001 0.367 .193 0.296

Political Identity 1.39 0.173 0.785 −0.438 −2.27 −1.05 –1.66

Feeling Thermometer 
(Black)

0.135 −0.039 0.082 −0.008 −0.288 −0.112 –0.083

Note. DBSCAN = Density-Based Clustering of Applications With Noise; IAT = Implicit Association Test. All variables are 
Z-scored. Positive Political Identity scores indicate liberalism, positive IAT scores indicate pro-White/anti-Black bias, and 
positive Feeling Thermometer scores indicate warmer feelings toward Black people. 

A B

FIGURE 5. DBSCAN clustering: Code implementation and visualization results. This figure 
demonstrates the R code (Panel A) used to perform density-based clustering with the DBSCAN 
algorithm and its results visualized in two dimensions (Panel B). In Panel A, key DBSCAN 
parameters include eps (the neighborhood radius for clustering) and minPts (the minimum 
number of points required to form a dense region). The output assigns each data point to a 
cluster, with points labeled as “0” identified as noise. Panel B shows the resulting DBSCAN 
clusters, with convex hulls outlining the boundaries of each cluster. Noise points (cluster 0) are 
excluded for clarity. The plot projects high-dimensional data into two dimensions using the first 
two principal components (Dim1 and Dim2). Panel A: R Code for DBSCAN; Panel B: Cluster 
Plot for DBSCAN Results.
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Analysis (MBA), a technique for association rule mining. PCA and similar meth-
ods, like factor analysis, have a long history in psychology (e.g., validating psy-
chological scales; Gruijters, 2019). In contrast, MBA is less commonly applied in 
psychology but is well-known in fields like economics, where it has been used to 
analyze geo-tagged data on tourists’ spending and vacation experiences (Vavpotič 
et al., 2021). While PCA helps reduce complexity by summarizing data into prin-
cipal components, MBA provides an entirely different capability: It identifies co-
occurrence patterns and associations between variables, offering unique insights 
at the item level. Together, these techniques demonstrate how UML can reduce 
complexity and uncover meaningful patterns in large data sets. 

To illustrate these tools, imagine again that you are a social cognition researcher 
aiming to understand how various factors (e.g., motivation to control prejudice, 
implicit bias) influence prejudice reduction. You are working with a large data 
set of millions of participants and hundreds of variables; analyzing all variables 
would therefore require significant computational power and be unwieldy for 
interpretation. To address this, you can use PCA to transform numerous correlated 
variables into a smaller set of uncorrelated components that capture the maximum 
variance. Or you can use MBA to create association rules that identify combina-
tions of factors (e.g., high motivation to control prejudice and positive feelings 
toward Black people) that commonly co-occur. You will then be better equipped to 
identify key factors driving the strongest attitudes (or the weakest attitudes) and 
develop more targeted interventions.

Principal Component Analysis. In PCA, we begin by calculating either a covari-
ance matrix or a correlation matrix. A correlation matrix is helpful when the vari-
ables are on different scales because it standardizes the variables and makes them 
comparable. Both covariance and correlation matrices reveal how each pair of 
variables in our data set varies together; higher values indicate greater depen-
dency between variables. PCA is a data-driven technique that does not assume 
any underlying structure, unlike factor analysis. PCA focuses on capturing the 
maximum variance in the data through a new set of uncorrelated variables, known 
as principal components. 

Implementing Principal Component Analysis. Implementing PCA follows five 
steps: (a) select (and standardize) the relevant variables; (b) compute the covari-
ance matrix; (c) perform decomposition on the matrix to obtain eigenvalues and 
eigenvectors, where the eigenvectors determine the principal components and the 
eigenvalues indicate the variance captured by each component; (d) select the num-
ber of principal components to retain; and (e) interpret the results by examining 
the loadings of the original variables on the principal components.

While Steps 1–3 of PCA implementation are data-driven (see Figure 6 for R 
code), researchers must decide the number of principal components (Step 4) that 
explain the optimal amount of variance and are most interpretable. As before, 
visual inspection helps guide this decision. Here, the scree plot (see Figure 7b) visu-
ally represents the variance explained by each principal component in the PCA. 
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FIGURE 7. Principal component analysis: R code and scree plot. This figure presents R code 
(Panel A) to extract and visualize key PCA outputs alongside the resulting scree plot (Panel 
B). The scree plot (Panel B) illustrates the percentage of variance explained by each principal 
component, guiding the selection of components for further analysis. Each bar represents 
a principal component, with numerical labels indicating the variance explained. The first 
few components account for the majority of the variance, with diminishing returns as the 
components increase. Panel A: R code for PCA Loadings and Variance Visualization; Panel B: 
Scree Plot of PCA Variance Explained.

FIGURE 6. Principal component analysis (PCA) code. This figure shows R code for performing 
PCA using the prcomp function. PCA reduces dimensionality by transforming variables into 
principal components that capture the most variance in the data. The arguments center the data 
(subtracting the mean) and scale it (standardizing variables).

A B
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In our example (visualized in Figure 7b), Principal Component 1 (PC1) explains 
16.7% of the total variance, the highest among all components, followed by PC2 
at 10.4%, and PC3 at 7.9%. Each subsequent component explains progressively 
less variance, with PC10 contributing just 3.1%. The plot shows an “elbow” shape, 
where the explained variance drops sharply after the first few components and 
then levels off, indicating that the first few principal components capture most of 
the variance and additional components would not add to the model fit. This sug-
gests that retaining around the first four principal components is reasonable for 
dimensionality reduction because they capture a substantial portion of the vari-
ance (41.88%) and are still parsimonious.

Interpreting Principal Component Analysis. The loadings for each principal compo-
nent indicate how much each original variable contributes to explaining the new 
dimension-reduced components. In this section, we focus on interpreting Princi-
pal Component 1 (PC1) for brevity because it explains the largest percentage of 
variance in the data set. 

PC1 is primarily shaped by items from the Motivation to Control Prejudice (mcpr) 
scale, and generally has high loading from low motivation to control prejudice (and 
low loading from high motivation to control prejudice). That is, the strongest posi-
tive contributors are mcpr Item 5 (loading = 0.28) and mcpr Item 9 (loading = 0.26), 
both of which reflect low motivation to control prejudice (and specifically a disre-
gard for how others may react to your prejudiced Ibehavior). For example, item 5 
states that “Going through life worrying about whether you might offend someone 
is just more trouble than it’s worth,” and Item 9 states that “I think that it is impor-
tant to speak one’s mind rather than to worry about offending someone.” Con-
versely, the strongest negative contributors—mcpr Item 13 (loading = −0.29) and 
mcpr Item 3 (loading = −0.29)—represent individuals who avoid offensive behavior. 
For instance, Item 13 states, “It bothers me a great deal when I think I’ve offended 
someone, so I’m always careful to consider other people’s feelings.” For a prejudice-
reduction scholar, PC1 offers a meaningful new variable to examine how reduced 
motivation to control prejudice might moderate the effectiveness of an intervention. 
By interpreting and incorporating this principal component, researchers can sim-
plify their data while generating insights relevant to their theoretical goals. 

Market Basket Analysis. In MBA, rules are patterns discovered in the data that 
describe how items (i.e., a specific level or value of a variable such as a 2 on a 
7-point scale) co-occur with one another. These rules specify how the presence of 
certain items (antecedents) imply the presence of other items (consequents). In 
MBA, you first set a threshold, known as support, which specifies the minimum 
percentage of co-occurrence for an item set (i.e., a collection of items or variables 
that appear together) to be considered significant. For example, if a low level of 
religious identity (i.e., 1 on a 7-point scale) co-occurs with a neutral attitude (i.e., 
5 on a scale of 0–10) 38% of the time, it would be considered a significant rule if 
support was set to 30% (because 38% passes the 30% threshold), but not if support 
were set to 40% (because 38% does not pass that threshold). As before, the decision 
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of which support to use relies on researcher domain knowledge and testing on the 
data set. A high support threshold (e.g., only variables that occur together 80% of 
the time) might exclude meaningful patterns, while a low support threshold (e.g., 
all variables that occur together 10% of the time) might include too many associa-
tions that are not actually meaningful.

Two other outputs of MBA are the confidence and lift of the generated rules. Con-
fidence measures the likelihood that the presence of one item will result in the 
presence of another item. For example, if there is 80% confidence that a value of 1 
on “motivation to control prejudice” co-occurs with a value of 5 on “Black feel-
ing thermometer,” it means that 80% of the responses that include Item 1 also 
include Item 5. Lift compares the observed co-occurrence of items to their expected 
co-occurrence if they were independent (e.g., conceptually similar to a chi-square 
test of independence). A lift item greater than 1 indicates a meaningful association 
between items, meaning that the items co-occur more frequently than expected by 
chance.

Implementing Market Basket Analysis. MBA is implemented in four steps using the 
same numeric variables from our PCA example along with several additional cate-
gorical variables. Although Table 7 highlights that MBA is less suitable for numeric 
variables, we include them in this example to demonstrate that the method can 
be applied to numeric variables, albeit less effectively than with categorical data. 
The steps include: (a) convert the data set into a transactional format suitable for 

TABLE 7. Strengths, Weaknesses, and Usage Guidelines for Principal Component Analysis (PCA) and Market 
Basket Analysis (MBA)

Method Strengths Weaknesses When to Use When Not to Use

PCA Reduces dimensionality, 
helping to simplify 
complex datasets, 
while retaining as much 
variance as possible. 
Useful for visualizing 
high-dimensional data 
and finding latent 
patterns.

Limited to continuous, 
numeric data and can 
be sensitive to scaling 
and outliers. Results 
can be challenging to 
interpret as principal 
components are linear 
combinations rather 
than original variables.

Suitable for exploratory 
analysis, dimensionality 
reduction, and 
cases where high-
dimensional data needs 
to be visualized or 
simplified.

Not suitable when the 
relationships between 
variables are nonlinear 
or when the dataset 
contains categorical 
variables, as PCA 
assumes linearity 
and operates only on 
numeric data. 

MBA Identifies co-occurrence 
patterns among 
variables, ideal for 
discovering associations 
and relationships at 
the item level. Does 
not require predefined 
relationships, and the 
resulting rules are easy 
to interpret.

Depends heavily on 
support, confidence, 
and lift thresholds, 
which may exclude 
rare but meaningful 
associations. 
Can produce an 
overwhelming number 
of rules without careful 
filtering.

Effective for exploratory 
purposes when 
seeking frequent 
item associations or 
to understand co-
occurring behaviors. 
Useful for generating 
rules to inform decision 
making or to identify 
prevalent patterns in 
transactional data.

Less useful for datasets 
with high dimensionality 
where co-occurrence 
patterns may be sparse. 
Avoid if the focus is 
on continuous data 
relationships, as MBA 
is better suited for 
categorical or binary 
data patterns.
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association rule mining; (b) apply the algorithm to generate frequent item sets 
by setting minimum support and confidence thresholds; (c) extract association 
rules from these frequent item sets to identify patterns and relationships; and (d) 
interpret the rules to understand co-occurrences and dependencies within the data 
structure. See also Tables 8 and 9 for glossary definitions of key terms related to 
PCA and MBA.

To prepare for MBA, we need to ensure that all relevant variables are in a “trans-
action” format (see Figure 8a). This format allows us to identify patterns and asso-
ciations between different responses, similar to how a retailer might identify which 

TABLE 9. Glossary of Terms Used in Market Basket Analysis

Term Definition

Support In MBA, support quantifies how often a combination of items occurs in the data set. 
For example, in IAT data, it could measure the prevalence of patterns, such as the 
proportion of participants with both high explicit and implicit biases.

Rules In MBA, rules identify combinations of items that frequently co-occur in the data 
set. For example, in IAT data, these rules could help uncover patterns, such as the 
tendency for individuals with certain explicit biases to also show implicit bias.

Lift Lift measures the strength of an association rule in MBA by comparing the observed 
co-occurrence of items to what would be expected by chance. For example, a lift 
greater than 1 in IAT data analysis would indicate a strong association between 
implicit and explicit attitudes, highlighting meaningful patterns.

Confidence Confidence in MBA measures the likelihood that one item will be present when 
another is present. For example, in IAT data, high confidence might indicate that 
participants with a high explicit bias are likely to also show high implicit bias.

Antecedents and 
Consequents 

In MBA, the antecedent represents the initial item(s) that may lead to the occurrence 
of another item, while the consequent is the item(s) that is likely to occur when 
the antecedent is present. This relationship is often displayed as “Antecedent => 
Consequent,” with the antecedent on the left-hand side (LHS) and the consequent 
on the right-hand side (RHS). For example, in IAT data, an antecedent might be a 
particular explicit attitude while the consequent could be an implicit attitude.

Note. IAT = Implicit Association Test.

TABLE 8. Glossary of Terms Used in Principal Component Analysis

Term Definition

Eigenvalues In PCA, eigenvalues represent the amount of variance captured by each principal 
component. For example, larger eigenvalues in IAT data analysis could suggest that 
a particular component explains a significant portion of variance in implicit and 
explicit attitudes.

Loadings Loadings in PCA indicate the contribution of each variable to a principal 
component. High loadings suggest that a variable is strongly associated with the 
component.

Note. IAT = Implicit Association Test.
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products are frequently bought together. That is, “transaction” format represents 
the data as a table where each row is a transaction and each column is an item, 
with items indicating whether an item is present in the transaction (1 for “Yes,” 0 
for “No”). For example, in our research, each respondent’s set of survey answers 
can be a transaction. If we have responses like “Political Identity: Conservative” 
and “IAT Pro-White Bias: High,” these responses are treated as items within the 
transaction (e.g., a participant will get a 1 in the Political Identity: Conservative 
column if that is true of the participant). Variables without specific levels are trans-
formed into binary items to indicate their presence or absence. 

Interpreting Market Basket Analysis. Results from applying MBA to the Proj-
ect Implicit data set show many expected associations; for example, there is a 
strong association between “CountyNo” and “State,” as demonstrated by rules 
like “{CountyNo=} => {State=}” with 100% confidence. Understandably, know-
ing the county number allows us to predict the state with complete certainty 
and vice versa. Interestingly, we also find associations among variables such as 
att7 (a 7-point Likert scale measuring racial attitudes), Tblack_0to10 (an 11-point 

FIGURE 8. Market basket analysis: R code and parallel coordinates plot. Panel A provides the R 
code for applying the a priori algorithm to derive association rules from transaction data, using 
a minimum support of 10% and a confidence threshold of 80%. Panel B visualizes the top 9 
rules with a parallel coordinates plot. The vertical axes represent the variables involved in the 
rules, with positions numbered 3, 2, and 1 indicating the sequence from antecedents (LHS) 
on the left to consequents (RHS) on the right. Connecting lines depict individual rules, where 
line thickness and color intensity signify confidence levels: Thick, dark red lines indicate high-
confidence associations, while gray lines represent weaker relationships. Panel A: Applying the 
A Priori Algorithm for Market Basket Analysis; Panel B: Parallel Coordinates Plot of Association 
Rules in Market Basket Analysis.

A B
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thermometer rating of warmth toward Black people), and Twhite_0to10 (an 
11-point thermometer rating of warmth toward White people). For instance, the 
rule {att7=4, Tblack_0to10=5} => {Twhite_0to10=5} with a confidence of 91.6% sug-
gests that individuals with neutral racial attitudes on one measure tend to have 
neutral racial attitudes on the others. Already, we can see how such methods are 
helpful in revealing, for example, that the zero-point in explicit attitude measures 
is meaningful and robust across indicators. 

Variables like {broughtwebsite=} and {STATE=} reflect whether participants pro-
vided any response rather than what the participants responded with. For example, 
the rule {broughtwebsite=} => {STATE=} shows that participants who responded 
(with any response) to broughtwebsite were likely to have also answered the 
STATE question. This could reflect the survey design, where participants reaching 
broughtwebsite had already answered STATE, or it may suggest that particularly 
engaged participants tend to respond to all demographic questions. While this 
rule may not have much theoretical meaning in the current data, the general prin-
ciple is that researchers can use these rule structures to identify dependencies or 
predictions between items in their data. 

The high lift items observed in many rules, often greater than 3, suggest that the 
antecedents and consequents appear together much more frequently than would 
be expected by chance, indicating strong and meaningful associations (Figure 8b). 
For example, we found that participants who give neutral responses on one mea-
sure tend to do so on others, suggesting “no preference” may be a consistent trait. 
In addition, rules like “{att7=4, Tblack_0to10=5} => {Twhite_0to10=5}” with 91.6% 
confidence indicate that specific attitudes toward Black individuals are mirrored 
in feelings toward White individuals. Again, these insights can help design inter-
ventions by understanding the relationships among respondents’ attitudes and 
demographics.

CONCLUSION

UML provides a complementary toolkit that can provide new insights beyond tra-
ditional statistical approaches already commonly used in social cognition scholar-
ship. Of course, UML is not a replacement for these traditional statistical methods 
that focus on inference (identifying causal relationships) or prediction (such as 
forecasting future outcomes). These approaches remain essential for advancing 
research, but they also require researchers to have a priori expectations about the 
relationships between variables in their data set. In contrast, UML techniques allow 
psychologists to explore their data and uncover bottom-up patterns that conven-
tional methods might have missed. Moreover, the outputs of UML techniques—
such as the assignment of participants to different clusters—can be used as inputs 
to later formal statistics or supervised machine learning (Alashwal et al., 2019). 

Looking toward the future, the growing volume (i.e., the number of partici-
pants) and complexity (i.e., the number of variables) of psychological data sets will 
benefit from UML tools. Here, we illustrated four UML tools that enable data min-
ing and discovery: clustering (K-means and DBSCAN) that reveals relationships 
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among variables or participants, and dimension reduction (PCA and MBA) that 
helps wrangle unwieldy data sets into interpretable and analyzable structures. 
We hope that by introducing these basic tools of clustering and dimension reduc-
tion, researchers will be equipped with the essential concepts underlying UML 
and also be empowered to engage with increasingly sophisticated applications of 
UML. Indeed, by laying out the logic and implementation of tools such as PCA 
and K-means (which are commonly used in psychology), we hope to show that the 
same basic logic and implementation underwrites seemingly advanced UML tools 
(e.g., large language models applied to text data or recommendation algorithms 
applied to social media behavior; e.g., Brady et al., 2023; Charlesworth et al., 2024). 

Using UML throughout social cognition will help ensure that our scholarship 
remains applied and relevant even to complex real-world data. Insights from 
social cognition have already been used to answer pressing societal challenges 
ranging from improving intergroup attitudes (Paluck & Green, 2009) to reduc-
ing online misinformation (Ecker et al., 2022), and to resolving political conflict 
(Voelkel et al., 2023). To scale up these insights and show their implications for 
real-world settings using naturalistic data, we will be best equipped by adding 
UML to our toolkits. 
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