Social Cognition, Vol. 43, No. 3, 2025, pp. 194-216
© 2025 The Guilford Press. https://doi.org/10.1521/s0c0.2025.43.3.194

From Data to Discovery: Unsupervised Machine
Learning’s Role in Social Cognition

Jonathan E. Doriscar
Department of Psychology and Institute for Policy Research, Northwestern University

Michalis Mamakos
Department of Management, Kellogg School of Management, Northwestern University

Sylvia P. Perry
Department of Psychology and Institute for Policy Research, Northwestern University

Tessa E. S. Charlesworth
Department of Management, Kellogg School of Management, Northwestern University

The study of how cognition and society interact is a complex endeavor that
demands multiple methods and tools. Yet research in social cognition has
only begun to capitalize on unsupervised machine learning (UML) tools that
can uncover hidden patterns in data. In this tutorial, we introduce UML as a
complementary approach to traditional statistical methods. We illustrate four
methods (K-means clustering, Density-Based Clustering of Applications With
Noise [DBSCAN], Principal Component Analysis [PCA], and Market Basket
Analysis) applied to data from Project Implicit and the Implicit Association.
We show how UML can identify patterns and relationships that conventional
methods might overlook. Throughout, we provide clear (and openly avail-
able) code and highlight important researcher decision points in implement-
ing UML in social cognition work. By bringing the advances of UML into
social cognition, we will be better equipped to tackle larger, more diverse, or
multilevel data sets that reveal the complexities of our social world.
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The study of social cognition aims to understand how cognitive processes shape
the perception, retention, and utilization of information about social groups
(e.g., stereotypes; Fiske, 1993). Social cognition research has a lengthy history
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(Higgins & Bargh, 1987), but rapidly evolving computational approaches are
now reshaping how we study social cognitive phenomena (e.g., by using natu-
ral language processing and agent-based modeling; Charlesworth et al., 2021;
Kosinski, 2019). Keeping up with these computational approaches may seem
daunting, but they are grounded in familiar machine learning (ML) tools that
many researchers already understand. Indeed, ML has been widely used in
social cognitive research, including to predict policy support for sexual minori-
ties (Hatzenbuehler et al., 2020), classify hate speech on social media (Davani
et al., 2023), and identify patterns of regional intergroup bias (Hehman et al.,
2021). However, tutorials on ML for social scientists remain rare and primarily
focus on supervised ML (SML, used for prediction; Yarkoni & Westfall, 2017; see
also Pargent et al., 2023).

In this tutorial, we therefore review ML principles and introduce common unsu-
pervised ML (UML, primarily used for uncovering patterns in data sets) tools to
reduce barriers for social cognition researchers in using UML to study the link
between cognitive processes and social behavior. Of note, our goal is not to pro-
pose UML as a replacement for hypothesis-driven, theory-based approaches, but
rather to show how UML can complement traditional methods by uncovering
new patterns, highlighting gaps in existing theories, and inspiring new research
questions. This tutorial aims to guide researchers toward a flexible approach that
leverages both data-driven discoveries and theory-driven insights—a blend of
top-down and bottom-up perspectives.

We organize the remainder of the article as follows: We briefly review SML as a
contrast for understanding UML. We then review four UML tools (K-means clus-
tering, Density-Based Clustering of Applications With Noise [DBSCAN], Princi-
pal Component Analysis [PCA], and Market Basket Analysis [MBA]). Each tool
is applied to large-scale survey data on race attitudes (Project Implicit; Xu et al.,
2024), with all R code and data provided via OSE.

SUPERVISED MACHINE LEARNING

SML involves predicting a target variable, with a goal of finding the best combina-
tion of features to predict this target (i.e., the model is “supervised” by the target
variable). For example, one might try to predict implicit pro-White /anti-Black bias
(i.e., Implicit Association Test [IAT] scores) using input variables like explicit atti-
tudes or political ideology. SML tools encompass regression, for continuous out-
comes like IAT scores, and classification, for categorical outcomes like “high bias”
or “low bias.” Data are divided into training (typically ~60%—-80% of the data) and
testing sets (typically ~20%-40% of the data). The model “learns” relationships
from the training set, and then evaluates out-of-sample accuracy on the testing set
using metrics like root-mean-square error (RMSE), mean-absolute error (MAE), or
R2.In choosing a final SML model, the researcher has to balance between underfit-
ting, which oversimplifies the model and leads to systematic bias, versus overfit-
ting, which overcomplicates the model and reduces generalizability (Yarkoni &
Westfall, 2017). (See Table 1 for definitions of terms used in SML.)
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TABLE 1. Glossary of Terms Used in Supervised Machine Learning

Term Definition

Features Independent variables or predictors in a data set. For example, features could include
explicitly measured attitudes, U.S. state, political ideology, and other relevant
demographic variables used to predict IAT D-scores.

Target variables The outcome variables that the model aims to predict. For example, the target variable
could be the IAT D-score, which measures implicit pro-White/anti-Black attitudes.

Classification A type of SML task aimed at predicting categorical outcomes. For example,
classification could involve predicting categories like “high bias,” “moderate bias,” or
“low bias” based on the IAT D-scores and other features.

Overfitting When a model learns the noise in the training data rather than the underlying pattern,
leading to poor generalization to new data. For instance, if the model is too tailored to
the specific IAT D-scores and explicit attitudes data set, it may perform poorly on new,
unseen data.

Underfitting When a model is too simple to capture the underlying pattern in the data, resulting
in poor performance on both the training and test data sets. For example, underfitting
occurs in the context of predicting IAT D-scores and explicit attitudes if the model
fails to accurately capture the complex relationships between variables, such as the
subtle influences of political ideology or demographic factors, leading to inaccurate
predictions across different data sets.

Flexibility The ability of a model to fit a wide variety of data patterns. More flexible models
can capture more complex relationships but may be more difficult to interpret. For
example, a Random Forest model might capture complex interactions between
political ideology and IAT D-scores, but its results may be less interpretable than those
from a linear model.

Interpretability ~ The extent to which a model’s predictions can be understood and explained. Simple
models like linear regression are usually more interpretable, allowing researchers to
understand how explicit attitudes and political ideology predict IAT D-scores.

Bias The tendency of a model to make systematic errors in one direction. High bias can lead
to underfitting, where the model is too simple to capture the underlying pattern in the
data, such as not fully accounting for the relationship between political ideology and
IAT D-scores.

Note. IAT = Implicit Association Test.

UNSUPERVISED MACHINE LEARNING

Unlike SML, which predicts specific outcomes (e.g., IAT D-scores), UML identifies
natural clusters or structures in the data without requiring a predefined target (or
dependent) variable. Thus, rather than having a single focal variable “supervis-
ing” the process, UML enables researchers to discover hidden relationships across
all variables simultaneously.

The field of social cognition grapples with several complex questions that tra-
ditional methods alone often struggle to answer—questions that UML methods
are particularly well positioned to examine. For example, understanding how
individuals” multiple intersecting identities (e.g., race, gender, class) shape their
own and others’ social cognitive processes is a key challenge (Settles & Buchanan,
2014). To address this, clustering methods like hierarchical clustering or OPTICS
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could reveal how individuals naturally group across these dimensions, offer-
ing insights that challenge or refine existing theories. Similarly, variability in
prejudice-reduction intervention effectiveness remains an open question in the
field (Paluck et al., 2021). Topic modeling approaches, such as Latent Dirichlet
Allocation (LDA) and Structural Topic Modeling (STM), could analyze partici-
pants” open-ended responses to identify nuanced patterns in how interventions
are perceived. Even within traditionally studied groups, researchers have noted
significant diversity, such as racial heterogeneity (Martinez, 2024). Graph-based
techniques like the Louvain method could map these within-group dynamics to
uncover novel structures of identity or shared experience. These examples high-
light how UML complements theory-driven approaches while enabling research-
ers to explore new dimensions of social cognition.

This tutorial focuses on introducing both common (e.g., K-means, PCA) and
less familiar (e.g.,, DBSCAN, MBA) UML methods to provide researchers with a
foundation for expanding their analytic toolkit. Specifically, we showcase tech-
niques to cluster participants based on key measures, such as attitudes or demo-
graphics (K-means, DBSCAN), reduce complex data sets into principal components
(PCA), and identify co-occurrence patterns at the item level (MBA). In the follow-
ing sections, we provide step-by-step guidance on each UML method, emphasiz-
ing key decision points—such as determining the optimal number of clusters or
interpreting component loadings. We also include R code for implementing each
method, shown in figures with executable code in black and comments in green (not
treated as R code). For additional support, a set of YouTube videos (linked in the
supplemental materials and available on GitHub: https://github.com/jedoriscar
/Unsupervised-Machine-Learning.git) walks users through the implementation of
all discussed methods.

K-MEANS AND DBSCAN CLUSTERING

Social cognition researchers often aim to identify meaningful patterns within
populations, especially across complex attitudes, beliefs, and behaviors. How-
ever, traditional analyses typically rely on predefined categories, such as political
affiliation or socioeconomic status. In contrast, clustering enables the discovery of
nuanced categories that emerge from intersections of relevant variables—such as
implicit and explicit attitudes or political ideology. For example, imagine you are a
prejudice researcher developing an intervention. You recognize that the effective-
ness of your intervention may vary across participants, but you find it challeng-
ing to explain this variability using your current variables. You know from past
research that people’s explicit and implicit attitudes toward Black Americans are
associated with political ideology (Charlesworth & Banaji, 2022; Nosek et al., 2007).
However, traditional analyses often struggle to uncover the complex patterns that
arise when politics, implicit attitudes, and explicit attitudes are considered simul-
taneously. Clustering is useful here because it can uncover natural patterns among
combinations of these attitudes and ideologies, revealing distinct psychological
profiles (e.g., individuals with liberal ideologies, pro-White/anti-Black implicit
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attitudes, and anti-Black explicit attitudes). Identifying such profiles could help
tailor interventions more precisely, enhancing their effectiveness for different sub-
sets of participants (Gaertner & Dovidio, 2000).

Notably, clustering can be used for both empirically driven data mining and as a
theoretically guided testing tool, allowing researchers to compare discovered clus-
ters with patterns predicted by existing theories. In other words, clustering, as with
all UML tools, is most useful when used with theoretical predictions and researcher
expertise to ensure that the results are grounded and generalizable to other settings.

Finding Clusters. Clusters are identified by grouping observations that are most
similar to each other. Clustering algorithms do this by using a similarity measure
(e.g., correlations) or a distance measure (e.g., Euclidean distance) between pairs of
observations or variables (e.g., respondents, if clustering people; or variables, if
clustering variables). Pairwise similarities are then summarized in a matrix. Vari-
ous clustering algorithms (e.g., K-means/modes, DBSCAN) are used to find opti-
mal groupings; the choice of algorithm depends on data type (e.g., numeric vs.
discrete), and the hypothesis (e.g., a hypothesized hierarchical structure).

In this tutorial, we focus on K-means and DBSCAN clustering algorithms
because they are widely used yet offer distinct approaches to clustering (Malik &
Tuckfield, 2019): K-means is useful for its simplicity and efficiency with large data
sets, while DBSCAN is better suited for identifying clusters of arbitrary shapes
and effectively handling noise. For a brief summary of their respective strengths,
limitations, and usage guidelines, see Table 2.

K-Means Clustering. K-means is a clustering algorithm that groups observa-
tions into K clusters by assigning each observation to the nearest centroid (i.e., the
average position within a cluster) and iteratively adjusting centroids to minimize
distances. Standardizing variables before clustering ensures that no single vari-
able skews the process, making distance calculations consistent. While methods
like elbow plots and silhouette scores (Kodinariya & Makwana, 2013) help sug-
gest an optimal K, the choice ultimately rests on researcher expertise. Automated
approaches (Roy, 2021) can support this selection, but they lack the theoretical
context and interpretational abilities of researchers. Because K-means is sensitive
to initial centroid placement, multiple runs (i.e., different initial random positions
of the centroids) or robustness checks are recommended. (See Table 3 for defini-
tions of terms used in K-Means Clustering.)

Implementing K-Means Clustering. To implement K-means clustering, we fol-
low four steps: (a) select and standardize the variables for analysis, (b) determine
the optimal number of clusters (K), (c) apply the K-means algorithm and per-
form cross-validation, and (d) interpret the results. For Step 1 in our example, we
chose to cluster people based on their responses to three variables: Political Iden-
tity (7-point Likert scale with higher scores indicating liberalism), IAT bias (with
higher D-scores indicating pro-White/anti-Black implicit bias), and a Feeling
Thermometer (11-point “thermometers,” with higher scores indicating warmer
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TABLE 2. Strengths, Weaknesses, and Usage Guidelines for K-Means and DBSCAN

Method  Strengths Weaknesses When to Use When Not to Use

K-means Simple to interpret,  Sensitive to initial centroid Ideal when the Not suitable if clusters
computationally selection, may struggle researcher has a are expected to be
efficient, and works ~ with nonspherical clusters. rough idea of the nonspherical, highly

well with large

Requires predefined choice number of clusters (K) imbalanced, or if K is

datasets and spherical of K, which can influence  and expects clusters  unknown and difficult

clusters.

DBSCAN Effective for

clustering results. to be spherical and  to estimate. Also less
relatively balanced.  effective for clusters with

varying densities and

noncontinuous data.

Requires careful parameter Useful when there Less effective for high-

identifying clusters of tuning, especially for are clusters of varying dimensional data or

varying shapes and
sizes, can handle

epsilon (the neighborhood shapes and noise in ~ when clusters have
radius), and may struggle  the dataset, or when  very similar densities.

noise points, and with high-dimensional clusters do not form  Also challenging when
doesn’t require the data. The choice of epsilon simple geometric the dataset lacks clear
number of clusters (K) and minimum points shapes. Ideal for boundaries, as DBSCAN
to be specified. (minPts) is data-sensitive datasets where the may incorrectly label
and requires researcher number of clusters is  noise points.
judgment. unknown.

TABLE 3. Glossary of Terms Used in K-Means Clustering

Term

Definition

Centroid

Within-cluster sum of squares

Cross-validation

Distance measure

In clustering methods like K-means, the centroid is the average position of all
data points in a cluster in multidimensional space. For example, the centroid
could represent the typical profile of individuals within a cluster based on their
IAT scores and explicit attitudes, such as those with moderate explicit bias but
low implicit bias.

Within-Cluster Sum of Squares measures the compactness of clusters by
summing the squared differences between each participant’s responses and
the cluster centroid. Lower Within-Cluster Sum of Squares could indicate more
cohesive clusters of individuals with similar IAT scores and attitudes.

Cross-validation is the process of refining a model or clustering solution through
successive iterations until it stabilizes. For example, this would involve running
the clustering algorithm multiple times to ensure that the identified clusters
consistently capture meaningful groupings of implicit and explicit biases.

A distance measure, such as Euclidean distance, quantifies how similar or
different data points are in a multidimensional space. For example, it could
help determine the similarity between participants based on their responses to
implicit and explicit attitude measures, aiding in identifying groups with similar
biases.

Note. IAT = Implicit Association Test.
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feelings toward Black people). In addition, we standardize the variables so that
each variable contributes the same amount to the clustering process.

Step 2 is to decide on the number of clusters (K). While the choice of parameter
can be guided by previous literature, it can be challenging to determine for novel
data sets with many variables. The elbow method is a visualization tool that helps
identify the optimal number of clusters by minimizing within-cluster distance
(such that the data points within a given cluster are more similar to each other).
This method (illustrated in Figure 1) involves plotting the total within-cluster sum
of squares (WSS; i.e., the average distance of the data points from their centroids)
against the number of clusters. The optimal K is indicated by the elbow point,
where the WSS shifts from rapidly decreasing to a slower decline, indicating that
additional clusters provide limited explanatory value).

In the R code (Figure 1a), we calculate the total WSS for different K-values and
then visualize the elbow plot. Figure 1b shows the tradeoff between clustering
quality (WSS) and parsimony (number of clusters). The elbow method addresses
this trade-off by identifying the point where incremental improvement in WSS
diminishes as the number of clusters increases. In our example, because WSS
decreases more slowly after K = 5 (Figure 1b), we select this number of clusters.
Researchers should look for a noticeable “bend” in the plot, although this may not
always be sharply defined, as in our example. To aid interpretation, additional
criteria such as the ratio of between-cluster variance to within-cluster variance
can provide guidance. Here, we chose K =5 (i.e., 5 latent clusters of respondents),
which gave the highest ratio of between-cluster to within-cluster variance. Specifi-
cally, the ratio was 40.9% for K = 3 and 60.9% for K = 5. This K-selection process
helps balance under- and overfitting by minimizing within-cluster variance while
also avoiding the overfitting that can occur with too many clusters.

In Step 3, we apply the K-means algorithm to calculate the distance between
individual data points (i.e., respondents) and cluster centroids using Euclidean
distance. We then cross-validate with 25 random cluster coordinate assignments
to ensure that they remain consistent regardless of the initial cluster assignments
(see Figure 2).

Interpreting K-Means Clustering. Step 4 in the clustering process is interpretation.
In Table 4, we highlight the five cluster means identified through the K-means
algorithm, showing how respondents in each cluster scored, on average, across
our three key variables. In Figure 3, we visualize the shape of these clusters on a
two-dimensional plot. Although the clustering occurs across multiple dimensions,
the two-dimensional plot provides a simplified representation to aid interpreta-
tion and communication. Cluster 1 exhibits a relatively low pro-White/anti-Black
bias, slightly liberal political identity, and relatively cold explicit attitudes toward
Black people. Cluster 2 is conservative, shows a slight pro-White/anti-Black bias,
and has cold feelings toward Black people. Cluster 3 is liberal, has a pro-White/
anti-Black bias, and has warm explicit feelings toward Black people. We find that
Cluster 4 has a pro-Black/anti-White bias, is slightly liberal, and has warm feelings
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FIGURE 1. Using the Elbow Method to determine the optimal number of clusters. This figure
demonstrates the implementation and output of the Elbow Method to identify the optimal
number of clusters (K) in K-means clustering. Panel A shows the R code used to calculate
the total within-cluster sum of squares (WSS) for a range of cluster numbers (1 to 10 in this
example). Panel B presents the WSS values plotted against the number of clusters (K). The
“elbow point,” where the rate of decrease in WSS slows, indicates the optimal number of
clusters. This approach allows researchers to balance cluster compactness with the number of
clusters. Panel A: Code Implementation of the Elbow Method; Panel B: Plot of Within-Cluster
Sum of Squares (WSS) Against Number of Clusters (K).

toward Black people. Cluster 5 has a pro-White/anti-Black bias, is conservative,
and has the most warm feelings toward Black people.

Social cognition theories can be used to guide interpretation of these clusters
of respondents. Clusters 3 and 5 align with the concept of aversive racism, where
individuals hold underlying prejudices (revealed by their IAT bias) that conflict
with their egalitarian self-concept (Dovidio & Gaertner, 2004; Pearson et al., 2009).
However, their distinct political identities (Cluster 3 is liberal, Cluster 5 is con-
servative) suggest that the origins of their aversive racism may differ, necessitat-
ing tailored approaches for anti-bias education (Vitriol & Banaji, 2024; Vitriol &
Moskowitz, 2021). Cluster 4 has a pro-Black/anti-White bias and warm feelings
toward Black people. Researchers interested in understanding the factors asso-
ciated with more positive racial attitudes could explore what differentiates this
group from others. Identifying such factors may provide insight into the condi-
tions under which individuals develop more egalitarian attitudes. Clusters 1 and 2
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# The algorithm uses Euclidean distance by default to measure the distance between data points and their cluster centroids.
set.seed(1234)

# Setting 2 random seed ensures thal the cluster assignments are consistent #ach time the code is run,

# as k-means clustering involves a random imitialization of eentroids.

lkm.res <- kmeans(iat_numeric_scaled, 5, nstart = 25)

# Perform k-means clustering on the scaled data ('iat_numeric scaled).

#- “centers = 5°: Specifies the number of clusters (K) to partition the data into.

- “nstart = 25" Runs the algarithm 25 times with different random centroid initializations

# and selects the clustering solution with the lowest within-cluster sum of squares

print(km.res)

# Output of "kmeans()';

#- "centers : The centroids (mean coordinates) of the clusters in the data space.

- "totss”: Total sum of squares (TSS), measurmg the total variance in the dutaset

- "withinss " A veetor of within-cluster sum of squares foreach cluster. measuring compactness.

- “lotwithinss™: Total within-cluster sum of squares across all clusters, used for evaluating clustering fit.
- "betweenss : Between-cluster sum of squares, capturing the separation between clusters,

#- 'size’: Number of data points assigned to each cluster. indicating cluster sizes.

o e

128

FIGURE 2. R Code for performing K-means clustering. This figure illustrates the R code used to
perform K-means clustering on the scaled data set. The code specifies the number of clusters
(K'=5) and runs the algorithm 25 times with different random initializations to ensure a stable
solution with the lowest total within-cluster sum of squares. The output of the kmeans() function
includes cluster assignments, centroids, and measures of fit, such as total within-cluster sum of
squares (compactness) and between-cluster sum of squares (separation).

seem to represent explicitly racist individuals, but they potentially differ in their
motivations, as suggested by their differing political identities.

Density-Based Clustering of Applications With Noise (DBSCAN). In our K-means
example, Cluster 3 displayed overlap with other groups, likely because it included
multiple subgroups (see Figure 3 for this overlap). This scenario suggests that we
might find a better solution using the DBSCAN algorithm. Unlike K-means, which
requires specifying the number of clusters (K) and assumes spherical cluster shapes,
DBSCAN identifies clusters based on the density of points and does not require
a predefined number of clusters. This makes DBSCAN particularly useful when
clusters are nested within one another and have arbitrary shapes, or when data sets

TABLE 4. K-Means Clustering: Means of the Key Variables Across Respondents Assigned to Each of the
5 Clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Variable (n =2303) (n=2771) (n =3070) (n =2636) (n =3075)
IAT D-score 0.171 0.305 0.412 -1.381 0.368
Political Identity 0.811 -0.906 0.854 0.351 -0.944
Feeling Thermometer -1.07 -1.14 0.628 0.575 0.712

(Black)

Note. IAT = Implicit Association Test. All variables are Z-scored. Positive Political Identity scores indicate liberalism,
positive IAT scores indicate pro-White/anti-Black bias, and positive Feeling Thermometer scores indicate warmer
feelings toward Black people.
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TABLE 5. Glossary of Terms Used in DBSCAN

Term Definition

Density In DBSCAN, density refers to the number of data points packed closely together in a
given area. For example, density could help identify clusters where participants have
similar IAT scores, indicating where attitudes naturally group.

Epsilon (e) Epsilon in DBSCAN is the maximum distance between two points to be considered
neighbors. For example, with IAT scores, a smaller epsilon groups individuals with
very similar scores, while a larger epsilon includes those with broader similarities.

Core points In DBSCAN, core points are data points that have a sufficient number of neighboring

points within the epsilon distance. For example, these points could help define
clusters, representing central members of a group with similar implicit and explicit
biases in IAT data.

Note. DBSCAN = Density-Based Clustering of Applications With Noise; IAT = Implicit Association Test.

# Visualize the K-means clustering results

11 The "Tnctoentra’ package provides an eisy
way (o create cluster visualizations,
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# = "k res”: This object containg the
k-means clustering resulis, inel
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getheme = theme_minimal(),
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# Use the 'jeo' palette for distinet and
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FIGURE 3. Visualizing K-means clustering results. This plot visualizes the K-means clustering
results, grouping data points (represented as dots) into clusters based on their assignments.
Each convex hull outlines the boundaries of a cluster, while colors and shapes distinguish
between different clusters. The plot is displayed in two dimensions, using the first two
principal components (Dim1 and Dim2) to project the high-dimensional data. Panel A: Code
Implementation for K-Means Visualization; Panel B: Visual Output of K-Means Clustering
Results.
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have a lot of noise (see Table 5 for a glossary of terms used in DBSCAN). DBSCAN
is widely utilized in social science research, such as analyzing clusters of opinions
on natural disasters (Mustakim et al., 2021) or grouping consumers based on their
geo-tagged social network data (Fan et al., 2021).

The DBSCAN algorithm requires a parameter (typically denoted as ¢) that
defines the radius within which points are considered neighbors. Points with a
sufficient number of neighbors (at least MinPts) within this radius become core
points. The algorithm starts with an arbitrary core point and assigns it as the first
cluster, then adds nearby points within the € radius to the cluster. If a point is close
enough to multiple core points, it is added to the cluster. Points not close enough
to any core points are considered “noise” and are left unclustered. A second clus-
ter is created when a new core point, with enough neighboring points within ¢, is
identified outside the reach of the first. This process repeats, with each new core
point potentially forming a new cluster if it is sufficiently distant from existing
clusters, allowing DBSCAN to identify multiple clusters of arbitrary shapes within
the data.

Implementing DBSCAN. To implement DBSCAN, we follow three steps using the
same numeric and standardized variables from our K-means example: (a) deter-
mine the optimal parameters (e.g., €, MinPts); (b) apply the DBSCAN algorithm to
identify core points (see Figure 4); and (c) interpret the results.

For Step 1 (see Figure 4a for code), we can use plotting (as we did for K-means)
to determine the optimal € value. Specifically, we use k-nearest neighbors (k-NN)
plotting (Figure 4b) to identify an elbow point, after which increasing the ¢ does
not significantly improve the model’s explanatory value. In our plot, the elbow
point for ¢ is between 0.5 and 0.6. In R (Figure 4a) we iterate with different & values
within that range and find that ¢ = 0.61 and MinPts = 5 lead to the largest noise
reduction as well as similar sample sizes within each of the clusters.

Interpreting DBSCAN. In Table 6, we present the means of key variables across the
seven clusters identified using DBSCAN. Clusters 1 and 3 are comparable to Clus-
ter 4 from the K-means example. These clusters are liberal and are characterized
by relatively pro-Black explicit attitudes and pro-Black implicit biases (indicated
by the negative IAT D-scores in Table 6). Cluster 2, by contrast, can be described as
“conflicted racists” because they are liberal, hold anti-Black explicit attitudes, yet
still exhibit pro-Black/anti-White implicit attitudes. Clusters 5, 6, and 7 represent
overt racists, characterized by highly conservative views, pro-White/anti-Black
implicit attitudes, and explicitly anti-Black explicit attitudes.

Comparing these findings with our K-means analysis, we observe similarities in
identifying aversive racism and differences in attitudes across political ideologies.
However, DBSCAN's ability to handle varying densities provided a more nuanced
understanding, especially in identifying two additional clusters beyond those
identified through the K-means algorithm. Figure 5 demonstrates DBSCAN's abil-
ity to identify clusters with diverse shapes and densities, making it effective for
nonspherical data structures that K-means may miss. However, this adaptability
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# Visualizing k-Nearest Neighbors
(KNN} Distunces —— (=
# The kNN distance plot is a N
diagnostic tool used in DBSCAN to
determine the optimal value for ‘eps’
(1he nepghhorhood radius).
# The &' paramieter corresponds to the 0]
number of peighbors (MinPis), which 8 ¥
i luences how clisters are defined %

@
i Crenerate the kNN distance plot for i
the scaled data Z &
KNNdistplot(iat_numeric_scale E
d, k=35) # Set k 10 5, aligning with
the MinPis parameter in DBSCAN

I e St

# Add a horizontal line to highligh =
the ‘elbow point’ in the kNN plot
abline(h = 0.55, col = "red", Ity
=2):f Set atthe chosen ‘eps’ value o - —
(based on the plot ingpection) c

# The horizontal line indicates the I I l I l l l l

threshold distance for clustering {eps). 0 2000 4000 6000 8000 10000 12000 140000
# Points below this line ure considerad
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Paints sorled by distance

above may be treated as nowse

FIGURE 4. Visualizing k-nearest neighbors (kNN) distances for DBSCAN. Panel A shows the
R code used to generate the kNN distance plot, a diagnostic tool for selecting the optimal
epsilon (eps) value in DBSCAN clustering. Panel B displays the resulting kNN distance plot,
with the red dashed line marking the chosen epsilon (eps = 0.55). Points below this threshold
are part of dense clusters, while those above may be classified as noise. The “elbow” in the
curve highlights the natural inflection point, guiding the selection of an appropriate eps value
for effective clustering. Panel A: Code Implementation for K-Means Visualization; Panel B: kNN
Distance Plot for DBSCAN Clustering.

can introduce overlap if parameters like € (the radius) and MinPts (minimum
number of points) are not carefully optimized (see Figure 5b for visualization of
overlap). Fine-tuning these parameters can reduce overlap, enabling clearer sepa-
ration between clusters.

DIMENSION REDUCTION AND ASSOCIATION RULES MINING

Data sets in the social sciences are becoming increasingly complex (Kosinski, 2019),
with increasing numbers of variables often across massive samples of partici-
pants. For example, consider the Project Implicit data sets, with tens of millions of
respondents and more than 200 variables that capture overlapping constructs (e.g.,
multiple indicators of explicit racial attitudes). These data sets are ideal for dimen-
sion reduction, which seeks to reduce many variables to a smaller subset while still
retaining most of the variability, or for association rule mining, which identifies
patterns and relationships among variables without reducing their number.

In this section, we focus on two techniques: (a) Principal Component Analy-
sis (PCA), a widely used dimension reduction method, and (b) Market Basket
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TABLE 6. DBSCAN Clustering: Means of the Key Variables Across Respondents Assigned to Each of the 7 Clusters

Cluster 1 Cluster 2  Cluster 3  Cluster4 Cluster 5 Cluster 6 Cluster 7

Variable (n=2033) (n=1514) (n=3557) (n=3967) (n=460) (n=1128) (n=1156)

IAT D-Score -0.188 -0.017 -0.078 -0.001 0.367 .193 0.296

Political Identity 1.39 0.173 0.785 -0.438 -2.27 -1.05 -1.66

Feeling Thermometer 0.135 -0.039 0.082 -0.008 -0.288 -0.112 -0.083
(Black)

Note. DBSCAN = Density-Based Clustering of Applications With Noise; IAT = Implicit Association Test. All variables are
Z-scored. Positive Political Identity scores indicate liberalism, positive IAT scores indicate pro-White/anti-Black bias, and
positive Feeling Thermometer scores indicate warmer feelings toward Black people.

A Density- Based Clustering with DBSCAN - B
# Parumelers:
# 'eps’ specifics the ncighborhood rdius for clustering.
# ‘'minPts' is the mimmum number of points required
1o form a dinse regron {cluster)
set.seed(1234) # Scr sced for reproducibility in
cluster assignment

dh.res < dbscan(iat_numerie_scaled, eps = 24 thusier
0.61, minPts = 5) # Perform DBSCAN with (]
specitied parameters LB
7 Plot the clustering results withour nodse points + 2
# Lise "factoextra’ to visualize the clustering results, %3
highlighting actual clusters without noise. 1 r
fviz_cluster(list( vs
data = fat_numeric_scaled_df_filtered|, b
-ncol(iat_numeric_scaled_df_filtered)], # o L
Exclude the cluster column for plotting E
cluster = £ i
iat_numeric_scaled_df_filteredScluster), » LR
Use thee ¢luster assignments 02
geom = "point", # Each data observation is shown 0lz
as & pomnt E] 4
ellipse.type = "convex", # Draw convex hulls LI
around cach cluster o5
getheme = theme minimal(), ¥ Apply a clean, 7
mimimal theme
palette = "jeo" £ Use the Yjeo' color paletie for e
clusters)
4 3 it 2

Dind {41.9%)

FIGURE 5. DBSCAN clustering: Code implementation and visualization results. This figure
demonstrates the R code (Panel A) used to perform density-based clustering with the DBSCAN
algorithm and its results visualized in two dimensions (Panel B). In Panel A, key DBSCAN
parameters include eps (the neighborhood radius for clustering) and minPts (the minimum
number of points required to form a dense region). The output assigns each data point to a
cluster, with points labeled as “0” identified as noise. Panel B shows the resulting DBSCAN
clusters, with convex hulls outlining the boundaries of each cluster. Noise points (cluster 0) are
excluded for clarity. The plot projects high-dimensional data into two dimensions using the first
two principal components (Dim1 and Dim2). Panel A: R Code for DBSCAN; Panel B: Cluster
Plot for DBSCAN Results.
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Analysis (MBA), a technique for association rule mining. PCA and similar meth-
ods, like factor analysis, have a long history in psychology (e.g., validating psy-
chological scales; Gruijters, 2019). In contrast, MBA is less commonly applied in
psychology but is well-known in fields like economics, where it has been used to
analyze geo-tagged data on tourists’ spending and vacation experiences (Vavpotic
et al., 2021). While PCA helps reduce complexity by summarizing data into prin-
cipal components, MBA provides an entirely different capability: It identifies co-
occurrence patterns and associations between variables, offering unique insights
at the item level. Together, these techniques demonstrate how UML can reduce
complexity and uncover meaningful patterns in large data sets.

To illustrate these tools, imagine again that you are a social cognition researcher
aiming to understand how various factors (e.g., motivation to control prejudice,
implicit bias) influence prejudice reduction. You are working with a large data
set of millions of participants and hundreds of variables; analyzing all variables
would therefore require significant computational power and be unwieldy for
interpretation. To address this, you can use PCA to transform numerous correlated
variables into a smaller set of uncorrelated components that capture the maximum
variance. Or you can use MBA to create association rules that identify combina-
tions of factors (e.g., high motivation to control prejudice and positive feelings
toward Black people) that commonly co-occur. You will then be better equipped to
identify key factors driving the strongest attitudes (or the weakest attitudes) and
develop more targeted interventions.

Principal Component Analysis. In PCA, we begin by calculating either a covari-
ance matrix or a correlation matrix. A correlation matrix is helpful when the vari-
ables are on different scales because it standardizes the variables and makes them
comparable. Both covariance and correlation matrices reveal how each pair of
variables in our data set varies together; higher values indicate greater depen-
dency between variables. PCA is a data-driven technique that does not assume
any underlying structure, unlike factor analysis. PCA focuses on capturing the
maximum variance in the data through a new set of uncorrelated variables, known
as principal components.

Implementing Principal Component Analysis. Implementing PCA follows five
steps: (a) select (and standardize) the relevant variables; (b) compute the covari-
ance matrix; (c) perform decomposition on the matrix to obtain eigenvalues and
eigenvectors, where the eigenvectors determine the principal components and the
eigenvalues indicate the variance captured by each component; (d) select the num-
ber of principal components to retain; and (e) interpret the results by examining
the loadings of the original variables on the principal components.

While Steps 1-3 of PCA implementation are data-driven (see Figure 6 for R
code), researchers must decide the number of principal components (Step 4) that
explain the optimal amount of variance and are most interpretable. As before,
visual inspection helps guide this decision. Here, the scree plot (see Figure 7b) visu-
ally represents the variance explained by each principal component in the PCA.
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it Perform Principal Component Analysis (PCA) -—-

# PCA is a dimensionality reduction technique that transforms the data into a set of
orthogonal components.

# We use the precomp function to perform PCA on the scaled dataset. Arguments:

# - center = TRUE: Ensures that the data is centered by subtracting the mean of cach
variable.

# -scale.= TRULE: Scales the data to have a standard deviation of |, making all vanables
comparable.

pea_result <- preomp(iat_pca_data_scaled, center = TRUFE, scale. =

TRUE)

# Summary of PCA resulrs -—

summary(pca_result)

# The summary provides:

# - Proportion of Variance: Shows the vartance explained by each principal component as a
percentage of the total variance.

# - Cumulative Proportion: Cumulatively adds up the variance explained by the
components, helping to decide how many components to retain,

FIGURE 6. Principal component analysis (PCA) code. This figure shows R code for performing
PCA using the prcomp function. PCA reduces dimensionality by transforming variables into
principal components that capture the most variance in the data. The arguments center the data

(subtracting the mean) and scale it (standardizing variables).

#t Print the loadings (principal component veckors) —--

# Loadings indicate how much each original variabla g
contributes to the principal components. B
it These values help interpret the components by showing o
the correlation of each variable with the component g
print(pea_resultSrotation) B
# Store the loadings for further analysis or visualization, 5
rotations <- pea_resultSrotation §1
# Visualize the variance explained by each principal g4
COMPONENI === g

o

# A scree plot displays the percentage of variance
explained by each principal component.
# The plot helps determime how many components to relain
based on the proportion of vanance,
viz_eig(pca_result, addlabels = TRUE, ylim =
e(0, 50)) +
lTahs(
title = "Scree Plot", # Title of the plot
x = "Principal Component", # X-axis label
¥ ="Percentage of Variance Explained” # |
Y-axis label 1 2 3 4 8 0
) be Principal Component
# Arguments;
# - nddlabels = TRUE: Adds numenical labels 1o each bar
for clarity
# - ylim = (0. 50): Sets the y-nxis limils 1o ensure proper
scaling

FIGURE 7. Principal component analysis: R code and scree plot. This figure presents R code
(Panel A) to extract and visualize key PCA outputs alongside the resulting scree plot (Panel
B). The scree plot (Panel B) illustrates the percentage of variance explained by each principal
component, guiding the selection of components for further analysis. Each bar represents
a principal component, with numerical labels indicating the variance explained. The first
few components account for the majority of the variance, with diminishing returns as the
components increase. Panel A: R code for PCA Loadings and Variance Visualization; Panel B:
Scree Plot of PCA Variance Explained.
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In our example (visualized in Figure 7b), Principal Component 1 (PC1) explains
16.7% of the total variance, the highest among all components, followed by PC2
at 10.4%, and PC3 at 7.9%. Each subsequent component explains progressively
less variance, with PC10 contributing just 3.1%. The plot shows an “elbow” shape,
where the explained variance drops sharply after the first few components and
then levels off, indicating that the first few principal components capture most of
the variance and additional components would not add to the model fit. This sug-
gests that retaining around the first four principal components is reasonable for
dimensionality reduction because they capture a substantial portion of the vari-
ance (41.88%) and are still parsimonious.

Interpreting Principal Component Analysis. The loadings for each principal compo-
nent indicate how much each original variable contributes to explaining the new
dimension-reduced components. In this section, we focus on interpreting Princi-
pal Component 1 (PC1) for brevity because it explains the largest percentage of
variance in the data set.

PC1 is primarily shaped by items from the Motivation to Control Prejudice (mcpr)
scale, and generally has high loading from low motivation to control prejudice (and
low loading from high motivation to control prejudice). That is, the strongest posi-
tive contributors are mcpr Item 5 (loading = 0.28) and mcpr Item 9 (loading = 0.26),
both of which reflect low motivation to control prejudice (and specifically a disre-
gard for how others may react to your prejudiced Ibehavior). For example, item 5
states that “Going through life worrying about whether you might offend someone
is just more trouble than it’s worth,” and Item 9 states that “I think that it is impor-
tant to speak one’s mind rather than to worry about offending someone.” Con-
versely, the strongest negative contributors—mcpr Item 13 (loading = —0.29) and
mcpr Item 3 (loading = —0.29)—represent individuals who avoid offensive behavior.
For instance, Item 13 states, “It bothers me a great deal when I think I've offended
someone, so I'm always careful to consider other people’s feelings.” For a prejudice-
reduction scholar, PC1 offers a meaningful new variable to examine how reduced
motivation to control prejudice might moderate the effectiveness of an intervention.
By interpreting and incorporating this principal component, researchers can sim-
plify their data while generating insights relevant to their theoretical goals.

Market Basket Analysis. In MBA, rules are patterns discovered in the data that
describe how items (i.e., a specific level or value of a variable such as a 2 on a
7-point scale) co-occur with one another. These rules specify how the presence of
certain items (antecedents) imply the presence of other items (consequents). In
MBA, you first set a threshold, known as support, which specifies the minimum
percentage of co-occurrence for an item set (i.e., a collection of items or variables
that appear together) to be considered significant. For example, if a low level of
religious identity (i.e., 1 on a 7-point scale) co-occurs with a neutral attitude (i.e.,
5 on a scale of 0-10) 38% of the time, it would be considered a significant rule if
support was set to 30% (because 38% passes the 30% threshold), but not if support
were set to 40% (because 38% does not pass that threshold). As before, the decision
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TABLE 7. Strengths, Weaknesses, and Usage Guidelines for Principal Component Analysis (PCA) and Market
Basket Analysis (MBA)

Method Strengths

Weaknesses

When to Use

When Not to Use

PCA

MBA

Reduces dimensionality,
helping to simplify
complex datasets,
while retaining as much
variance as possible.
Useful for visualizing
high-dimensional data
and finding latent
patterns.

Identifies co-occurrence
patterns among

Limited to continuous,
numeric data and can
be sensitive to scaling
and outliers. Results
can be challenging to
interpret as principal
components are linear
combinations rather
than original variables.

Depends heavily on
support, confidence,

Suitable for exploratory
analysis, dimensionality
reduction, and

cases where high-
dimensional data needs
to be visualized or
simplified.

Effective for exploratory
purposes when

Not suitable when the
relationships between
variables are nonlinear
or when the dataset
contains categorical
variables, as PCA
assumes linearity

and operates only on
numeric data.

Less useful for datasets
with high dimensionality

where co-occurrence
patterns may be sparse.
Avoid if the focus is

on continuous data
relationships, as MBA
is better suited for
categorical or binary
data patterns.

variables, ideal for
discovering associations
and relationships at

the item level. Does
not require predefined
relationships, and the
resulting rules are easy
to interpret.

and lift thresholds,
which may exclude
rare but meaningful
associations.

Can produce an
overwhelming number
of rules without careful
filtering.

seeking frequent

item associations or

to understand co-
occurring behaviors.
Useful for generating
rules to inform decision
making or to identify
prevalent patterns in
transactional data.

of which support to use relies on researcher domain knowledge and testing on the
data set. A high support threshold (e.g., only variables that occur together 80% of
the time) might exclude meaningful patterns, while a low support threshold (e.g.,
all variables that occur together 10% of the time) might include too many associa-
tions that are not actually meaningful.

Two other outputs of MBA are the confidence and lift of the generated rules. Con-
fidence measures the likelihood that the presence of one item will result in the
presence of another item. For example, if there is 80% confidence that a value of 1
on “motivation to control prejudice” co-occurs with a value of 5 on “Black feel-
ing thermometer,” it means that 80% of the responses that include Item 1 also
include Item 5. Lift compares the observed co-occurrence of items to their expected
co-occurrence if they were independent (e.g., conceptually similar to a chi-square
test of independence). A lift item greater than 1 indicates a meaningful association
between items, meaning that the items co-occur more frequently than expected by
chance.

Implementing Market Basket Analysis. MBA is implemented in four steps using the
same numeric variables from our PCA example along with several additional cate-
gorical variables. Although Table 7 highlights that MBA is less suitable for numeric
variables, we include them in this example to demonstrate that the method can
be applied to numeric variables, albeit less effectively than with categorical data.
The steps include: (a) convert the data set into a transactional format suitable for
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TABLE 8. Glossary of Terms Used in Principal Component Analysis

Term Definition

Eigenvalues In PCA, eigenvalues represent the amount of variance captured by each principal
component. For example, larger eigenvalues in IAT data analysis could suggest that
a particular component explains a significant portion of variance in implicit and
explicit attitudes.

Loadings Loadings in PCA indicate the contribution of each variable to a principal
component. High loadings suggest that a variable is strongly associated with the
component.

Note. IAT = Implicit Association Test.

association rule mining; (b) apply the algorithm to generate frequent item sets
by setting minimum support and confidence thresholds; (c) extract association
rules from these frequent item sets to identify patterns and relationships; and (d)
interpret the rules to understand co-occurrences and dependencies within the data
structure. See also Tables 8 and 9 for glossary definitions of key terms related to
PCA and MBA.

To prepare for MBA, we need to ensure that all relevant variables are in a “trans-
action” format (see Figure 8a). This format allows us to identify patterns and asso-
ciations between different responses, similar to how a retailer might identify which

TABLE 9. Glossary of Terms Used in Market Basket Analysis

Term Definition

Support In MBA, support quantifies how often a combination of items occurs in the data set.
For example, in IAT data, it could measure the prevalence of patterns, such as the
proportion of participants with both high explicit and implicit biases.

Rules In MBA, rules identify combinations of items that frequently co-occur in the data
set. For example, in IAT data, these rules could help uncover patterns, such as the
tendency for individuals with certain explicit biases to also show implicit bias.

Lift Lift measures the strength of an association rule in MBA by comparing the observed
co-occurrence of items to what would be expected by chance. For example, a lift
greater than 1 in IAT data analysis would indicate a strong association between
implicit and explicit attitudes, highlighting meaningful patterns.

Confidence Confidence in MBA measures the likelihood that one item will be present when
another is present. For example, in IAT data, high confidence might indicate that
participants with a high explicit bias are likely to also show high implicit bias.

Antecedents and  In MBA, the antecedent represents the initial item(s) that may lead to the occurrence
Consequents of another item, while the consequent is the item(s) that is likely to occur when
the antecedent is present. This relationship is often displayed as “Antecedent =>
Consequent,” with the antecedent on the left-hand side (LHS) and the consequent
on the right-hand side (RHS). For example, in IAT data, an antecedent might be a
particular explicit attitude while the consequent could be an implicit attitude.

Note. IAT = Implicit Association Test.
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FIGURE 8. Market basket analysis: R code and parallel coordinates plot. Panel A provides the R
code for applying the a priori algorithm to derive association rules from transaction data, using
a minimum support of 10% and a confidence threshold of 80%. Panel B visualizes the top 9
rules with a parallel coordinates plot. The vertical axes represent the variables involved in the
rules, with positions numbered 3, 2, and 1 indicating the sequence from antecedents (LHS)
on the left to consequents (RHS) on the right. Connecting lines depict individual rules, where
line thickness and color intensity signify confidence levels: Thick, dark red lines indicate high-
confidence associations, while gray lines represent weaker relationships. Panel A: Applying the
A Priori Algorithm for Market Basket Analysis; Panel B: Parallel Coordinates Plot of Association
Rules in Market Basket Analysis.

products are frequently bought together. That is, “transaction” format represents
the data as a table where each row is a transaction and each column is an item,
with items indicating whether an item is present in the transaction (1 for “Yes,” 0
for “No”). For example, in our research, each respondent’s set of survey answers
can be a transaction. If we have responses like “Political Identity: Conservative”
and “IAT Pro-White Bias: High,” these responses are treated as items within the
transaction (e.g., a participant will get a 1 in the Political Identity: Conservative
column if that is true of the participant). Variables without specific levels are trans-
formed into binary items to indicate their presence or absence.

Interpreting Market Basket Analysis. Results from applying MBA to the Proj-
ect Implicit data set show many expected associations; for example, there is a
strong association between “CountyNo” and “State,” as demonstrated by rules
like “{CountyNo=} => {State=}" with 100% confidence. Understandably, know-
ing the county number allows us to predict the state with complete certainty
and vice versa. Interestingly, we also find associations among variables such as
att7 (a 7-point Likert scale measuring racial attitudes), Tblack_0to10 (an 11-point
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thermometer rating of warmth toward Black people), and Twhite_0tol0 (an
11-point thermometer rating of warmth toward White people). For instance, the
rule {att7=4, Tblack_0to10=5} => {Twhite_0to10=5} with a confidence of 91.6% sug-
gests that individuals with neutral racial attitudes on one measure tend to have
neutral racial attitudes on the others. Already, we can see how such methods are
helpful in revealing, for example, that the zero-point in explicit attitude measures
is meaningful and robust across indicators.

Variables like {broughtwebsite=} and {STATE=} reflect whether participants pro-
vided any response rather than what the participants responded with. For example,
the rule {broughtwebsite=} => {STATE=} shows that participants who responded
(with any response) to broughtwebsite were likely to have also answered the
STATE question. This could reflect the survey design, where participants reaching
broughtwebsite had already answered STATE, or it may suggest that particularly
engaged participants tend to respond to all demographic questions. While this
rule may not have much theoretical meaning in the current data, the general prin-
ciple is that researchers can use these rule structures to identify dependencies or
predictions between items in their data.

The high lift items observed in many rules, often greater than 3, suggest that the
antecedents and consequents appear together much more frequently than would
be expected by chance, indicating strong and meaningful associations (Figure 8b).
For example, we found that participants who give neutral responses on one mea-
sure tend to do so on others, suggesting “no preference” may be a consistent trait.
In addition, rules like “{att7=4, Tblack_0to10=5} => {Twhite_0to10=5}" with 91.6%
confidence indicate that specific attitudes toward Black individuals are mirrored
in feelings toward White individuals. Again, these insights can help design inter-
ventions by understanding the relationships among respondents’ attitudes and
demographics.

CONCLUSION

UML provides a complementary toolkit that can provide new insights beyond tra-
ditional statistical approaches already commonly used in social cognition scholar-
ship. Of course, UML is not a replacement for these traditional statistical methods
that focus on inference (identifying causal relationships) or prediction (such as
forecasting future outcomes). These approaches remain essential for advancing
research, but they also require researchers to have a priori expectations about the
relationships between variables in their data set. In contrast, UML techniques allow
psychologists to explore their data and uncover bottom-up patterns that conven-
tional methods might have missed. Moreover, the outputs of UML techniques—
such as the assignment of participants to different clusters—can be used as inputs
to later formal statistics or supervised machine learning (Alashwal et al., 2019).
Looking toward the future, the growing volume (i.e., the number of partici-
pants) and complexity (i.e., the number of variables) of psychological data sets will
benefit from UML tools. Here, we illustrated four UML tools that enable data min-
ing and discovery: clustering (K-means and DBSCAN) that reveals relationships



214 Doriscar et al.

among variables or participants, and dimension reduction (PCA and MBA) that
helps wrangle unwieldy data sets into interpretable and analyzable structures.
We hope that by introducing these basic tools of clustering and dimension reduc-
tion, researchers will be equipped with the essential concepts underlying UML
and also be empowered to engage with increasingly sophisticated applications of
UML. Indeed, by laying out the logic and implementation of tools such as PCA
and K-means (which are commonly used in psychology), we hope to show that the
same basic logic and implementation underwrites seemingly advanced UML tools
(e.g., large language models applied to text data or recommendation algorithms
applied to social media behavior; e.g., Brady et al., 2023; Charlesworth et al., 2024).

Using UML throughout social cognition will help ensure that our scholarship
remains applied and relevant even to complex real-world data. Insights from
social cognition have already been used to answer pressing societal challenges
ranging from improving intergroup attitudes (Paluck & Green, 2009) to reduc-
ing online misinformation (Ecker et al., 2022), and to resolving political conflict
(Voelkel et al., 2023). To scale up these insights and show their implications for
real-world settings using naturalistic data, we will be best equipped by adding
UML to our toolkits.
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Data availability. All data files and code are provided openly at https://github
.com/jedoriscar/Unsupervised-Machine-Learning; https:/ /osf.io/52qx1/.
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